Improvement of the Crystallinity of Silicon Films Deposited by Hot-Wire Chemical Vapor Deposition with Negative Substrate Bias

2013 ◽  
Vol 42 (8) ◽  
pp. 2464-2469 ◽  
Author(s):  
Lei Zhang ◽  
Honglie Shen ◽  
Jiayi You
2005 ◽  
Vol 862 ◽  
Author(s):  
Charles W. Teplin ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
Robert Reedy ◽  
Bobby To ◽  
...  

AbstractWe have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm-3). The hydrogen concentration is found to increase substantially with film thickness from 5·1018 to 5·1019 cm-3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.


2006 ◽  
Vol 910 ◽  
Author(s):  
Charles W. Teplin ◽  
Matthew Page ◽  
Eugene Iwaniczko ◽  
Kim M. Jones ◽  
Robert M. Ready ◽  
...  

AbstractWe grow epitaxial silicon films onto (100) silicon wafers from pure silane by hot-wire chemical vapor deposition (HWCVD). The films grow epitaxially for a thickness hepi before a Si:H cones nucleate and expand. We study the dependence of hepi on growth rate and the differences between Ta and W filaments. The surface morphology of thin but completely epitaxial films are studied in order to correlate the surface roughness during growth with the eventual epitaxial breakdown thickness. Surface roughness, strain and H at the wafer/film interface are not likely to cause the observed breakdown.


1999 ◽  
Vol 85 (9) ◽  
pp. 6843-6852 ◽  
Author(s):  
K. F. Feenstra ◽  
R. E. I. Schropp ◽  
W. F. Van der Weg

1996 ◽  
Vol 427 ◽  
Author(s):  
Won-Jun Lee ◽  
Sa-Kyun Rha ◽  
Seung-Yun Lee ◽  
Dong-Won Kim ◽  
Soung-Soon Chun ◽  
...  

AbstractThe substrate bias was applied during the chemical vapor deposition (CVD) process of copper in an effort to change the adsorption behaviors of the reactant. Copper films were deposited on TiN and SiO2 from Cu(hfac)(tmvs) with the substrate bias and without one. The surface morphology, the thickness, the sheet resistance and the purity of the films were investigated. When the negative substrate bias of -30 V was applied to the substrate, the deposition rate of copper increased both on TiN and SiO2. No change was observed in the chemical composition of the copper film deposited with substrate bias in comparison with that of the copper film deposited with no bias. It was calculated that Cu(hfac) has the dipole moment whose direction is from copper to hfac. Under the d. c.electric field, dipole tends to align along the poling direction. Resulting from the overlapping population (OP) value analysis, the improvement of deposition rate under negative substrate bias was explained due to the adsorption of copper atom in Cu(hfac) species directly onto the substrate by the electric field applied between the substrate and the gas showerhead.


10.30544/128 ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 7-14
Author(s):  
Meysam Zarchi ◽  
Shahrokh Ahangarani

The effect of new growth techniques on the mobility and stability of amorphous silicon (a-Si:H) thin film transistors (TFTs) has been studied. It was suggested that the key parameter controlling the field-effect mobility and stability is the intrinsic stress in the a-Si:H layer. Amorphous and microcrystalline silicon films were deposited by radiofrequency plasma enhanced chemical vapor deposition (RF-PECVD) and hot-wire chemical vapor deposition (HW-CVD) at 100 ºC and 25 ºC. Structural properties of these films were measured by Raman Spectroscopy. Electronic properties were measured by dark conductivity, σd, and photoconductivity, σph. For amorphous silicon films deposited by RF-PECVD on PET, photosensitivity's of >105 were obtained at both 100 º C and 25 ºC. For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 105 was obtained at 100 ºC. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution show σph~ 10-4 Ω-1cm-1, while maintaining a photosensitivity of ~102 at both 100 ºC and 25 ºC. Microcrystalline silicon films with a large crystalline fraction (> 50%) can be deposited by HW-CVD all the way down to room temperature.


Sign in / Sign up

Export Citation Format

Share Document