Fermi Level and Electrostatic Screening Factor in Degenerate Semiconductors and Metal Alloys

2019 ◽  
Vol 48 (5) ◽  
pp. 3399-3404
Author(s):  
John S. Cetnar ◽  
D. L. Rode
2018 ◽  
Vol 6 (39) ◽  
pp. 18928-18937 ◽  
Author(s):  
Yuchong Qiu ◽  
Ying Liu ◽  
Jinwen Ye ◽  
Jun Li ◽  
Lixian Lian

Doping Sn into the Cu2Te lattice can synergistically enhance the power factor and decrease thermal conductivity, leading to remarkably optimized zTs. The lone pair electrons from the 5s orbital of Sn can increase the DOS near the Fermi level of Cu2Te to promote PF and reduce κe by decreasing the carrier concentration. This study explores a scalable strategy to optimize the thermoelectric performance for intrinsically highly degenerate semiconductors.


2020 ◽  
Vol 8 (34) ◽  
pp. 17579-17594 ◽  
Author(s):  
Francesco Ricci ◽  
Alexander Dunn ◽  
Anubhav Jain ◽  
Gian-Marco Rignanese ◽  
Geoffroy Hautier

Gapped metals present in their band structure a gap near the Fermi level. This key feature makes these metals comparable to degenerate semiconductors and thus suitable as thermoelectrics. The present screening searches them systematically.


Author(s):  
K. F. Russell ◽  
L. L. Horton

Beams of heavy ions from particle accelerators are used to produce radiation damage in metal alloys. The damaged layer extends several microns below the surface of the specimen with the maximum damage and depth dependent upon the energy of the ions, type of ions, and target material. Using 4 MeV heavy ions from a Van de Graaff accelerator causes peak damage approximately 1 μm below the specimen surface. To study this area, it is necessary to remove a thickness of approximately 1 μm of damaged metal from the surface (referred to as “sectioning“) and to electropolish this region to electron transparency from the unirradiated surface (referred to as “backthinning“). We have developed electropolishing techniques to obtain electron transparent regions at any depth below the surface of a standard TEM disk. These techniques may be applied wherever TEM information is needed at a specific subsurface position.


2002 ◽  
Vol 75 (4-5) ◽  
pp. 359-371
Author(s):  
M. Hidaka ◽  
N. Tokiwa ◽  
M. Yoshimura ◽  
H. Fujii ◽  
Jae-Young Choi ◽  
...  

1993 ◽  
Vol 90 ◽  
pp. 249-254 ◽  
Author(s):  
C Wolverton ◽  
M Asta ◽  
S Ouannasser ◽  
H Dreyssé ◽  
D de Fontaine

1988 ◽  
Vol 154 (3) ◽  
pp. 525 ◽  
Author(s):  
V.P. Antropov ◽  
Valentin G. Vaks ◽  
M.I. Katsnel'son ◽  
V.G. Koreshkov ◽  
A.I. Likhtenshtein ◽  
...  

2012 ◽  
pp. 120409100715007
Author(s):  
JAINI J L ◽  
SREEKANTH A MALLAN ◽  
MURUKAN P. A ◽  
RITA ZARINA

Sign in / Sign up

Export Citation Format

Share Document