scholarly journals Experimental and Theoretical Studies of Cu-Sn Intermetallic Phase Growth During High-Temperature Storage of Eutectic SnAg Interconnects

2020 ◽  
Vol 49 (12) ◽  
pp. 7194-7210
Author(s):  
A. Morozov ◽  
A. B. Freidin ◽  
V. A. Klinkov ◽  
A. V. Semencha ◽  
W. H. Müller ◽  
...  

AbstractIn this paper, the growth of intermetallic compound (IMC) layers is considered. After soldering, an IMC layer appears and establishes a mechanical contact between eutectic tin-silver solder bumps and Cu interconnects in microelectronic components. Intermetallics are relatively brittle in comparison with copper and tin. In addition, IMC formation is typically based on multi-component diffusion, which may include vacancy migration leading to Kirkendall voiding. Consequently, the rate of IMC growth has a strong implication on solder joint reliability. Experiments show that the intermetallic layers grow considerably when the structure is exposed to heat. Mechanical stresses may also affect intermetallic growth behavior. These stresses arise not only from external loadings but also from thermal mismatch of the materials constituting the joint, and from the mismatch produced by the change in shape and volume due to the chemical reactions of IMC formation. This explains why in this paper special attention is being paid to the influence of stresses on the kinetics of the IMC growth. We develop an approach that couples mechanics with the chemical reactions leading to the formation of IMC, based on the thermodynamically sound concept of the chemical affinity tensor, which was recently used in general statements and solutions of mechanochemistry problems. We start with a report of experimental findings regarding the IMC growth at the interface between copper pads and tin based solder alloys in different microchips during a high temperature storage test. Then we analyze the growth kinetics by means of a continuum model. By combining experiment, theory, and a comparison of experimental data and theoretical predictions we finally find the values of the diffusion coefficient and an estimate for the chemical reaction constant. A comparison with literature data is also performed.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hao-Wen Hsueh ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Li-Hui Chen ◽  
Kuan-Jen Chen

Three wires, Au, Cu, and Ag-Au-Pd, were bonded on an Al pad, inducing IMC growth by a 155 hr high temperature storage (HTS) so that the electrical resistance was increased and critical fusing current density (CFCD) decreased. Observations of the Ag-Au-Pd wire after HTS (0–1000 hr) indicated that IMC between the Ag-Au-Pd wire and Al Pad was divided into three layers: Ag2Al layers above and below the bonding interface and a polycrystal thin layer above the total IMC. A high percentage of Pd and Au existed in this 200 nm thin layer, and could suppress Al diffusion into the Ag matrix to inhibit IMC growth. After PCT-1000 hr, a noncontinuous structure still remained between the IMC layer and interface, and the main phase of IMC was (Ag, Au, Pd)2Al with a hexagonal structure.


2007 ◽  
Vol 124-126 ◽  
pp. 5-8
Author(s):  
Ja Myeong Koo ◽  
Dea Gon Kim ◽  
Seung Boo Jung

The interfacial reactions and shear properties of Sn-37Pb (wt.%) solder bumps with two different under bump metallizations (UBMs), Cu and Ni, were investigated after high temperature storage (HTS) tests at 150 C for up to 65 days. Two different intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn, were formed at the bump/Cu interface, whereas only a Ni3Sn4 IMC layer was formed at the bump/Ni interface. The thicknesses of these IMCs increased linearly with the square root of duration time. The IMC growth rate at the bump/Cu UBM interface was much greater than that at the bump/Ni UBM interface. The shear properties of the bumps with the Cu UBM were greatly decreased with increasing duration time, compared with those with the Ni UBM.


Sign in / Sign up

Export Citation Format

Share Document