scholarly journals Time-Lapse Imaging of Ag3Sn Thermal Coarsening in Sn-3Ag-0.5Cu Solder Joints

Author(s):  
J. W. Xian ◽  
S. A. Belyakov ◽  
C. M. Gourlay

Abstract The coarsening of Ag3Sn particles occurs during the operation of joints and plays an important role in failure. Here, Ag3Sn coarsening is studied at 125°C in the eutectic regions of Sn-3Ag-0.5Cu/Cu solder joints by SEM-based time-lapse imaging. Using multi-step thresholding segmentation and image analysis, it is shown that coalescence of Ag3Sn particles is an important ripening process in addition to LSW-like Ostwald ripening. About 10% of the initial Ag3Sn particles coalesced during ageing, coalescence occurred uniformly across eutectic regions, and the scaled size distribution histograms contained large particles that can be best fit by the Takajo model of coalescence ripening. Similar macroscopic coarsening kinetics were measured between the surface and bulk Ag3Sn particles. Tracking of individual surface particles showed an interplay between the growth/shrinkage and coalescence of Ag3Sn.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4793-4793
Author(s):  
Shugo Kowata ◽  
Kazunori Murai ◽  
Kenichi Nomura ◽  
Tatsuo Oyake ◽  
Shigeki Ito ◽  
...  

Abstract Abstract 4793 Introduction: Conventional microscopic evaluation of bone marrow (BM) and in vitro assays have suggested that platelets arise from the proplatelet (PP) that extend from the mature megakaryocytes (MKs) in BM. On the other hand, recently, a study with in vivo imaging showed that MKs routinely release heterogeneous substantial large particles into BM sinusoids (Tobias Junt et. al., Science 317,1767, 2007). They noted that large particles may represent multiple intertwined or single immature proplatelets. However, it has been unclear whether the heterogeneous large particles consist of intertwined strings PPs or “cytoplasmic fragment (CF)”. Thus, in our study, to resolve this riddle, we planed to observe the dynamics of MKs with a modified imaging technique and we have cleared the presence and role of CF in platelet production. Materials and methods: Our study was approved by the Iwate Medical University Institutional Animal Care and Use Committee. 1) Mice: Six- to 8-week-old transgenic C57/BL6 (actin promoter driven EGFP) was used. 2) In vitro time lapse imaging of MK and PPF study: Primary mature MKs from femur BM were cultured for 12 hrs. Time lapse images were taken using Zeiss LSM510 meta confocal microscope (CLM). 3) 3-D reconstitution imaging of fixed BM study: the BM core was removed and immediately fixed and stained with PE-conjugated anti-CD61 antibody. Images were taken using CLM and reconstituted to 3-D images to keep the continuity between MK cell body and PP. 4) BM imaging by Multiphoton intravital microscopy (MP-IVM): Mice were anesthetized, and the frontoparietal skull was exposed. To trace individual MK over time in BM of living mice, time lapse images were taken. Results: By in vitro time lapse imaging of MK study, it become clear that primary cultured MK formed CF in which morphology was distinctly different from PP (Fig.1). Reversible interconversion between CF and PP was observed also. We observed that CF formation was more augmented in the presence of other BM cells. Because 3-D reconstitution imaging of fixed BM study has a benefit to observe amorphous structure without breaking of spatial continuity, we successfully proved the presence of CF and PP in BM sinusoid clearly (Fig.2). BM imaging by MP-IVM demonstrated that MK formed CF and extended protrusions into sinusoids. We have proved that MK formed and extended CF and PP coincidentally into sinusoids (Fig.3). Discussion: We had taken an evidence of presence of CF by in vitro time lapse imaging and 3-D reconstitution imaging. The meaning of reversible interconversion between CF and PP remains unclear in our study. This fact may closely associate with the efficacy of platelet production and avoiding precocious platelet activation in BM. The result that MK produced and extended CF and PP coincidentally suggests that both PP and CF formation may be essential for platelet production process. In conclusion, MK forms PP and CF in living BM. Both PP and CF have critical roles in platelet production mechanism. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
John T. Sauls ◽  
Jeremy W. Schroeder ◽  
Steven D. Brown ◽  
Guillaume Le Treut ◽  
Fangwei Si ◽  
...  

The mother machine is a microfluidic device for high-throughput time-lapse imaging of microbes. Here, we present MM3, a complete and modular image analysis pipeline. MM3 turns raw mother machine images, both phase contrast and fluorescence, into a data structure containing cells with their measured features. MM3 employs machine learning and non-learning algorithms, and is implemented in Python. MM3 is easy to run as a command line tool with the occasional graphical user interface on a PC or Mac. A typical mother machine experiment can be analyzed within one day. It has been extensively tested, is well documented and publicly available via Github.


2019 ◽  
Vol 55 (90) ◽  
pp. 13538-13541 ◽  
Author(s):  
Carlos J. C. Rodrigues ◽  
João M. Sanches ◽  
Carla C. C. R. de Carvalho

Transaminase activity was determined by time-lapse imaging using a colourimetric reaction and image analysis. The correlation between substrate concentration and luminance allows the screening of biocatalysts and determination of kinetic parameters.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


Sign in / Sign up

Export Citation Format

Share Document