In Situ X-Ray Diffraction Analysis of Face-Centered Cubic Metals Deformed at Room and Cryogenic Temperatures

2019 ◽  
Vol 28 (8) ◽  
pp. 4658-4666
Author(s):  
Marcel Tadashi Izumi ◽  
John Jairo Hoyos Quintero ◽  
Maicon Rogerio Crivoi ◽  
Milene Yumi Maeda ◽  
Ricardo Sanson Namur ◽  
...  
2011 ◽  
Vol 26 (2) ◽  
pp. 114-118 ◽  
Author(s):  
Thomas Blanton ◽  
Scott Misture ◽  
Narasimharao Dontula ◽  
Swavek Zdzieszynski

Silver sulfide, Ag2S, is most commonly known as the tarnish that forms on silver surfaces due to the exposure of silver to hydrogen sulfide. The mineral acanthite is a monoclinic crystalline form of Ag2S that is stable to 176°C. Upon heating above 176°C, there is a phase conversion to a body-centered cubic (bcc) form referred to as argentite. Further heating above 586°C results in conversion of the bcc phase to a face-centered cubic (fcc) phase polymorph. Both high-temperature cubic phases are solid-state silver ion conductors. In situ high-temperature X-ray diffraction was used to better understand the polymorphs of Ag2S on heating. The existing powder diffraction file (PDF) entries for the high-temperature fcc polymorph are of questionable reliability, prompting a full Rietveld structure refinement of the bcc and fcc polymorphs. Rietveld analysis was useful to show that the silver atoms are largely disordered and can only be described by unreasonably large isotropic displacement parameters or split site models.


Nanoscale ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 4067-4071 ◽  
Author(s):  
M. Yamauchi ◽  
K. Okubo ◽  
T. Tsukuda ◽  
K. Kato ◽  
M. Takata ◽  
...  

In situ X-ray diffraction measurements reveal that the transformation of a AuCu nanoalloy from a face-centered-cubic to an L10 structure is accelerated under a hydrogen atmosphere.


2011 ◽  
Vol 1335 ◽  
Author(s):  
Anthony Grunenwald ◽  
André Ayral ◽  
Pierre Antoine Albouy ◽  
Vincent Rouessac ◽  
David Jauffres ◽  
...  

ABSTRACTIn this work, hydrophobic mesostructured organosilica thin films, exhibiting isolated mesopores (~ 7 nm), have been successfully deposited by spin-coating using different polystyrene-block-polyethylene oxide copolymers (PS-b-PEO) as structure-directing agents and methyltriethoxysilane (MTES) as organosilica precursor. Different ordered mesostructures (Face Centered Cubic, 2D or 3D Hexagonal and Body Centered Cubic) can be achieved by controlling different synthesis parameters. X-Ray Diffraction (XRD) and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) techniques were used to investigate the mesostructure evolution through thermal and UV treatments. Swelling and shrinkage were evidenced by in-situ XRD and X-Ray Reflectivity measurements during the thermal removal of the meso-templates. Infrared spectroscopy and 29Si NMR were additionally used to investigate the microstructure evolution. The film porosity was estimated thanks to Ellipsometry Porosimetry (EP). Correlation between mechanical properties through nanoindentation measurements and the mesostructure ordering is discussed as well as assessments of the dielectric constant k by mercury contact probe.


2008 ◽  
Vol 373-374 ◽  
pp. 318-321
Author(s):  
J. Liang ◽  
M.K. Lei

Effects of stacking faults in a high nitrogen face-centered-cubic phase (γΝ) formed on plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel on peak shift and peak asymmetry of x-ray diffraction were investigated based on Warren’s theory and Wagner’s method, respectively. The peak shift from peak position of the γΝ phase is ascribed to the deformation faults density α, while the peak asymmetry of the γΝ phase is characterized by deviation of the center of gravity of a peak from the peak maximum (Δ C.G.) due to the twin faults density β. The calculated peak positions of x-ray diffraction patterns are consistent with that measured for plasma source ion nitrided 1Cr18Ni9Ti stainless steel.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


Sign in / Sign up

Export Citation Format

Share Document