Evaluation of the Ferromagnetic Cold-Sprayed Coating Peeling Process at the Interface Based on Magnetic Barkhausen Noise Testing

Author(s):  
Zhengchun Qian ◽  
Haihong Huang ◽  
Yingfei Ge ◽  
Huanbo Cheng ◽  
Xiaolin Jia ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2350
Author(s):  
Jia Liu ◽  
Guiyun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
Yongbing Xu ◽  
...  

Stress is the crucial factor of ferromagnetic material failure origin. However, the nondestructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress.


2019 ◽  
Vol 109 (11-12) ◽  
pp. 811-815
Author(s):  
B. Denkena ◽  
B. Bergmann ◽  
H. Blech

Unterschiedliche Belastungshistorien von Eisenbahnrädern führen zu Werkstoffveränderungen in der Lauffläche. Diese verursachen sporadisches Werkzeugversagen und verringern so die Prozesssicherheit. Die Messung der Material- und Prozesseigenschaften mit Barkhausenrauschen und Körperschall erlauben, individuelle Bearbeitungsparameter für jedes Exemplar festzulegen. Gezeigt werden die Herausforderungen in der Radsatzbearbeitung, und welche Informationen sich durch die Messtechniken gewinnen lassen.   Different load histories of train wheels lead to high variance of material properties on the running tread. Those cause unpredictable tool break and reduce process reliability. The measurement of magnetic Barkhausen noise and acoustic emission allow to gain information of the workpiece and the running process, to find optimal process parameters for the reconditioning of every individual wheel. Typical issues in train wheel machining and results of measurements are presented.


2010 ◽  
Vol 21 (5) ◽  
pp. 055703 ◽  
Author(s):  
Ping Wang ◽  
Shougao Zhu ◽  
Gui Yun Tian ◽  
Haitao Wang ◽  
John Wilson ◽  
...  

2005 ◽  
Vol 288 ◽  
pp. 433-442 ◽  
Author(s):  
J.A. Pérez-Benitez ◽  
J. Capó-Sánchez ◽  
J. Anglada-Rivera ◽  
L.R. Padovese

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5374
Author(s):  
Young-In Hwang ◽  
Yong-Il Kim ◽  
Dae-Cheol Seo ◽  
Mu-Kyung Seo ◽  
Woo-Sang Lee ◽  
...  

Residual stress, a factor affecting the fatigue and fracture characteristics of rails, is formed during the processes of fabrication and heat treatment, and is also generated by vertical loads on wheels due to the weight of vehicles. Moreover, damage to rails tends to accelerate due to the continuous increase in the number of passes and to the high speed of passing vehicles. Because this can have a direct effect on safety accidents, having a technique to evaluate and analyze the residual stresses in rails accurately is very important. In this study, stresses due to tensile loads applied to new rails and residual stresses remaining in used rails were measured by using magnetic Barkhausen noise method. First, a magnetization frequency and noise band suitable for the rails were selected. Moreover, by applying tensile loads to specimens and comparing the difference in magnetization amplitudes for each load, the stresses applied to the rails by using the magnetic Barkhausen noise method were measured, and the analysis of the results was verified. Based on these results, the difference in the results for the loads asymmetrically applied according to the wheel shape was analyzed by measuring for the head parts of used rails.


Sign in / Sign up

Export Citation Format

Share Document