scholarly journals Correction to: Deposition of Columnar-Morphology Lanthanum Zirconate Thermal Barrier Coatings by Solution Precursor Plasma Spraying

Author(s):  
Maryam Yaghtin ◽  
Amirhossein Yaghtin ◽  
Pooria Najafisayar ◽  
Zhaolin Tang ◽  
Tom Troczynski
2007 ◽  
Vol 336-338 ◽  
pp. 1759-1761 ◽  
Author(s):  
Wen Ma ◽  
Yue Ma ◽  
Sheng Kai Gong ◽  
Hui Bin Xu ◽  
Xue Qiang Cao

Lanthanum-cerium oxide (La2Ce2O7, LC) is considered as a new candidate material for thermal barrier coatings (TBCs) because of its low thermal conductivity and high phase stability between room temperature and 1673K. The LC coatings with different La2O3 contents were prepared by air plasma spraying (APS) and their lifetime was evaluated by thermal cyclic testing from room temperature to 1373 K. The structures of the coatings were characterized by XRD and SEM and the deviation of the composition from the powder was determined by EDS analysis. Long time annealing for the freestanding coating at 1673K reveals that the near stoichiometric LC coating is stable up to 240h, and the stability decreases with increasing the deviation from stoichiometric LC composition. During thermal cyclic testing, spallation was observed within the top coat near the bond coat. It is considered that the effect of intrinsic stress caused by the coefficient of thermal expansion (CTE) mismatch between top coat and bond coat is larger than that of thermally grown oxide (TGO) and the bond adherence of top coat with TGO.


2013 ◽  
Vol 227 ◽  
pp. 10-14 ◽  
Author(s):  
Sophie B. Weber ◽  
Hilde L. Lein ◽  
Tor Grande ◽  
Mari-Ann Einarsrud

2011 ◽  
Vol 354-355 ◽  
pp. 145-148
Author(s):  
Hong Song Zhang ◽  
Hong Chan Sun

Effect of substrate conditions, including material type, thickness and radius of substrate, on thermal-shocking stresses of plasma spraying Sm2Zr2O7/ NiCrCoAlY TBCs was analyzed through finite element method. Results show that radial stresses decrease with time increasing, and they decrease with the increasing of distance from center to edge along radius. However, axial residual stresses increse abruptly at the edge of specimen. All residual stresses increse with incresing of thermal expansion coefficient of substrate. Radial stresses increase with substrate thickness increasing, however, they are not effectd by substrate thickness if it is great than 20mm.and axial residual stresses and shear stresses are not effected by the substrate thickness. The maximum values of axial stresses and shear stresses were not effected by sustrate radius. and values of radial stresses remian invariable when substrate radius is over 18mm.


Sign in / Sign up

Export Citation Format

Share Document