Cognitive impairment and associations with structural brain networks, endocrine status, and risk genotypes in newly orchiectomized testicular cancer patients

Author(s):  
Cecilie R. Buskbjerg ◽  
Robert Zachariae ◽  
Mads Agerbæk ◽  
Claus H. Gravholt ◽  
Lene Haldbo-Classen ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Cuibai Wei ◽  
Shuting Gong ◽  
Qi Zou ◽  
Wei Zhang ◽  
Xuechun Kang ◽  
...  

Background: Changes in the metabolic and structural brain networks in mild cognitive impairment (MCI) have been widely researched. However, few studies have compared the differences in the topological properties of the metabolic and structural brain networks in patients with MCI.Methods: We analyzedmagnetic resonance imaging (MRI) and fluoro-deoxyglucose positron emission tomography (FDG-PET) data of 137 patients with MCI and 80 healthy controls (HCs). The HC group data comes from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The permutation test was used to compare the network parameters (characteristic path length, clustering coefficient, local efficiency, and global efficiency) between the two groups. Partial Pearson’s correlation analysis was used to calculate the correlations of the changes in gray matter volume and glucose intake in the key brain regions in MCI with the Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-cog) sub-item scores.Results: Significant changes in the brain network parameters (longer characteristic path length, larger clustering coefficient, and lower local efficiency and global efficiency) were greater in the structural network than in the metabolic network (longer characteristic path length) in MCI patients than in HCs. We obtained the key brain regions (left globus pallidus, right calcarine fissure and its surrounding cortex, left lingual gyrus) by scanning the hubs. The volume of gray matter atrophy in the left globus pallidus was significantly positively correlated with comprehension of spoken language (p = 0.024) and word-finding difficulty in spontaneous speech item scores (p = 0.007) in the ADAS-cog. Glucose intake in the three key brain regions was significantly negatively correlated with remembering test instructions items in ADAS-cog (p = 0.020, p = 0.014, and p = 0.008, respectively).Conclusion: Structural brain networks showed more changes than metabolic brain networks in patients with MCI. Some brain regions with significant changes in betweenness centrality in both structural and metabolic networks were associated with MCI.


Author(s):  
Michele Veldsman ◽  
Hsiao-ju Cheng ◽  
Fang Ji ◽  
Emilio Werden ◽  
Mohamed Khlif ◽  
...  

Abstract One third of ischemic stroke patients develop cognitive impairment. It is not known whether topographical secondary neurodegeneration within distributed brain structural covariance networks (SCNs) underlies this cognitive decline. We examined longitudinal changes in SCNs and their relationship to domain-specific cognitive decline in 73 ischemic stroke patients. Patients were scanned with magnetic resonance imaging (MRI) and assessed on five cognitive domains at subacute (3-months) and chronic (1-year) timepoints. Individual-level SCN scores of major cognitive networks were derived from MRI data at each timepoint. We found that distributed degeneration in higher-order cognitive networks was associated with cognitive impairment in subacute stroke. Importantly, faster degradation in these major cognitive SCNs over time was associated with greater decline in attention, memory, and language domains. Our findings suggest that subacute ischemic stroke is associated with degeneration of higher-order structural brain networks and degradation of these networks contribute to individual trajectories of longitudinal domain-specific cognitive dysfunction.


2015 ◽  
Vol 24 (9) ◽  
pp. 1174-1180 ◽  
Author(s):  
Ali Amidi ◽  
Lisa M. Wu ◽  
Mads Agerbaek ◽  
Patrick Londin Larsen ◽  
Anders D. Pedersen ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexandre Chan ◽  
Angie Yeo ◽  
Maung Shwe ◽  
Chia Jie Tan ◽  
Koon Mian Foo ◽  
...  

Abstract Strong evidence suggests that genetic variations in DNA methyltransferases (DNMTs) may alter the downstream expression and DNA methylation patterns of neuronal genes and influence cognition. This study investigates the association between a DNMT1 polymorphism, rs2162560, and chemotherapy-associated cognitive impairment (CACI) in a cohort of breast cancer patients. This is a prospective, longitudinal cohort study. From 2011 to 2017, 351 early-stage breast cancer patients receiving chemotherapy were assessed at baseline, the midpoint, and the end of chemotherapy. DNA was extracted from whole blood, and genotyping was performed using Sanger sequencing. Patients’ self-perceived cognitive function and cognitive performance were assessed at three different time points using FACT-Cog (v.3) and a neuropsychological battery, respectively. The association between DNMT1 rs2162560 and cognitive function was evaluated using logistic regression analyses. Overall, 33.3% of the patients reported impairment relative to baseline in one or more cognitive domains. Cognitive impairment was observed in various objective cognitive domains, with incidences ranging from 7.2% to 36.9%. The DNMT1 rs2162560 A allele was observed in 21.8% of patients and this was associated with lower odds of self-reported cognitive decline in the concentration (OR = 0.45, 95% CI: 0.25–0.82, P = 0.01) and functional interference (OR = 0.48, 95% CI: 0.24–0.95, P = 0.03) domains. No significant association was observed between DNMT1 rs2162560 and objective cognitive impairment. This is the first study to show a significant association between the DNMT1 rs2162560 polymorphism and CACI. Our data suggest that epigenetic processes could contribute to CACI, and further studies are needed to validate these findings.


iScience ◽  
2021 ◽  
pp. 102708
Author(s):  
Yu Takagi ◽  
Naohiro Okada ◽  
Shuntaro Ando ◽  
Noriaki Yahata ◽  
Kentaro Morita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document