Investigation of photoluminescence behavior of Gd3+ doped Y2SiO5 phosphor prepared by combustion synthesis method

2021 ◽  
Author(s):  
Kanchan Upadhyay ◽  
Sabu Thomas ◽  
Raunak Kumar Tamrakar ◽  
Nandakumar Kalarikkal
2021 ◽  
pp. 160745
Author(s):  
Zhanglin Chen ◽  
Wei Cui ◽  
Kaiming Zhu ◽  
Chunguang Zhang ◽  
Chuandong Zuo ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92360-92370 ◽  
Author(s):  
Raunak Kumar Tamrakar ◽  
D. P. Bisen ◽  
Kanchan Upadhyay ◽  
I. P. Sahu ◽  
Manjulata Sahu

Er3+ doped Gd2O3 phosphors were prepared via a combustion synthesis method. The prepared phosphor emits visible green colour.


2011 ◽  
Vol 186 ◽  
pp. 7-10 ◽  
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang ◽  
Ying He

Single phase Al3+ doped LiMn2O4 has been prepared by flameless solution combustion synthesis method at 600oC for 1h. X-ray diffraction (XRD) and scanning electric microscope (SEM) were used to determine the phase composition and micro morphology of the products. XRD analysis indicates that the purities increase and the lattice parameters of the products decrease with increasing Al3+ content. Electrochemical test indicates that the cycling performance of the products with Al3+ doping are better than that of the product without Al3+ doping. The product LiAl0.10Mn1.90O4 gets the best electrochemical performance. At the current density of 30mA/g, the initial discharge capacity of LiAl0.10Mn1.90O4 is 124.8mAh/g, and after 20 cycles, the capacity retention is more than 89%. SEM investigation indicates that the particles of LiAl0.10Mn1.90O4 are sub-micron in size and well dispersed.


2021 ◽  
Vol 15 (2) ◽  
pp. 128-135
Author(s):  
Thaís Luiz ◽  
Fabio Nakagomi ◽  
Reny Renzetti ◽  
Guilherme Siqueira

The microwave assisted combustion synthesis (MACS) as a new, quick and low cost synthesis method was used for preparation of niobium pentoxide (Nb2O5) powders. The present paper investigated the effect of reactant concentrations (ammonium niobium oxalate, urea and ammonium nitrate) on the characteristics of Nb2O5 nanoparticles. Three samples were synthesized with stoichiometric ratio between the fuel and oxidant (C1), excess of oxidant (C2) and excess of fuel (C3). In all samples, Nb2O5 crystalline nanoparticles with irregular morphology were detected. The synthesis of nanoparticles with smaller diameter in the C2 and C3 samples was confirmed by greater values of band gap energy measured through UV-Visible diffuse reflectance spectroscopy (indicating quantum confinement) and by the Rietveld refinement of X-ray diffraction patterns. The results showed that the amounts of oxidant and fuel can change synthesis temperature, influencing the final characteristics of the particles, such as size and existent phases. In these cases the excess of oxidant and fuel in the C2 and C3 samples, respectively, decreases the average synthesis temperature and decelerates the particle growth and the formation of the monoclinic phase.


2019 ◽  
Vol 3 (6) ◽  
pp. 1396-1405 ◽  
Author(s):  
Ali Reza Kamali ◽  
Safa Haghighat-Shishavan ◽  
Masoud Nazarian-Samani ◽  
Asma Rezaei ◽  
Kwang-Bum Kim

A novel shock-wave combustion synthesis method was developed for ultra-scalable, clean and energy efficient conversion of sand to nanostructured silicon with excellent performance as an anode material for Li-ion batteries.


2020 ◽  
Vol 6 ◽  
pp. 100075
Author(s):  
Annie Maria Mahat ◽  
Norlida Kamarulzaman ◽  
Mohd Sufri Mastuli ◽  
Nurhanna Badar ◽  
Nur Aimi Jani ◽  
...  

CrystEngComm ◽  
2019 ◽  
Vol 21 (36) ◽  
pp. 5461-5469 ◽  
Author(s):  
Yong Li ◽  
Hua Zhang ◽  
Xiao Yang ◽  
Gang He ◽  
Zengchao Yang ◽  
...  

We report scalable fabrication of single crystalline BNNS by a magnesiothermic reduction combustion synthesis method and their applications in thermoconductive polymeric composites.


2011 ◽  
Vol 341-342 ◽  
pp. 215-220
Author(s):  
Bao Wen Wang ◽  
Chuan Chang Gao ◽  
Hai Bo Zhao ◽  
Chu Guang Zheng

Fe2O3/Al2O3 composite at the mass ratio of 3:2 was prepared by sol-gel combustion synthesis using urea as fuel. The optimized preparation parameters were determined by the robust orthogonal experimental design (OED) method. Standard L9(34) orthogonal array was adopted, and the four factors were determined as the molar ratio of oxidizer nitrates to fuel urea Ф, relative amount of the deionized water added Rw, ignition temperature and sintering temperature. Range analysis of the relative importance of those four factors on the mean weight loss rate for the reduction of synthesized Fe2O3/Al2O3 with 50 vol% H2 indicated that the most influential factor was Ф, sintering temperature, Rw and ignition temperature in the descending order. And the optimized preparation parameters for Fe2O3/Al2O3 composite were Ф=1, Rw=7.5, ignition and sintering temperatures stabilized as 600°C and 950°C,respectively. Finally, the reaction characteristics of Fe2O3/Al2O3 prepared by SGCS and the other two reference methods (including sol-gel method and mechanical mixing method) were compared and the results verified that the optimized SGCS was the best option to synthesize Fe2O3/Al2O3 composite with good reaction performance.


2010 ◽  
Vol 152-153 ◽  
pp. 674-678 ◽  
Author(s):  
Bing Wang ◽  
Li Dan Tang ◽  
Jian Zhong Wang

Nanocrystalline ZnO powders have been synthesized by a novel combustion synthesis method using glycine and urea as mixed fuels and zinc nitrates as oxidant. The as-synthesized ZnO powders are characterized by DSC, XRD and SEM. Results show that the as-synthesized ZnO powders show well crystalline with hexagonal crystal structure and purity without any other impurities and the particle sizes are about 50~70nm calculated by the Scherrer formula.


2012 ◽  
Vol 485 ◽  
pp. 465-468
Author(s):  
Li Li Zhang ◽  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Bao Sen Wang ◽  
Ying He

Spinel LiMn2O4 have been prepared by the solution combustion synthesis method using acetate salts as raw materials and acetic acid as fuel. The phase compositions of the as-prepared products were determined by X-ray diffraction (XRD). The electrochemical performance of the products was tested by using a coin-type half battery versus lithium metal foil as anode material. XRD results suggested that the purities of the products prepared at 500oC are higher than these of the products prepared at 600oC. For the products prepared at 500oC, the purities of the products increase with increasing acetic acid ratios. But for the products prepared at 600oC, the purities of the products decrease with increasing acetic acid ratios. The performance tests indicated that the electrochemical performances of the products prepared at 500oC are better than these of the products prepared at 600oC. The product prepared at 500oC with the acetic acid ratio of 1.0 gets the best performance. The initial capacity of it reaches to 124.8mAh/g at the current density of 75mA/g, and after 50 cycles, the capacity retention is 93.7%.


Sign in / Sign up

Export Citation Format

Share Document