Absorption heat pump for waste heat reuse: current states and future development

2017 ◽  
Vol 11 (4) ◽  
pp. 414-436 ◽  
Author(s):  
Zhenyuan Xu ◽  
Ruzhu Wang
2000 ◽  
Author(s):  
Jens Møller Andersen

Abstract Heat integration with absorption heat pumps requires investigation of many types of plant designs. In this article, it is concluded that in many cases high temperature absorption systems for heat recovery are more economically feasible than absorption systems for cooling purposes. The conclusion is based on a project where the scope was to investigate technical and economical possibilities for heat integration of an absorption heat pump in a milk powder plant. The first idea behind the project was to use the waste heat from the rejected air to drive an absorption cooling system to reduce the electricity consumption for cooling proposes. The model of the plant was based on simulations as a background for a time averaged COP model. It was concluded that an absorption system for generating low temperature steam is more feasible.


2020 ◽  
Vol 10 (1) ◽  
pp. 323 ◽  
Author(s):  
Yi Yang ◽  
Zihua Wang ◽  
Qingya Ma ◽  
Yongquan Lai ◽  
Jiangfeng Wang ◽  
...  

In this paper, a novel combined heat and power (CHP) system is proposed in which the waste heat from a supercritical CO2 recompression Brayton cycle (sCO2) is recovered by a LiBr-H2O absorption heat pump (AHP). Thermodynamic and exergoeconomic models are established on the basis of the mass, energy, and cost balance equations. The proposed sCO2/LiBr-H2O AHP system is examined and compared with a stand-alone sCO2 system, a sCO2/DH system (sCO2/direct heating system), and a sCO2/ammonia-water AHP system from the viewpoints of energy, exergy, and exergoeconomics. Parametric studies are performed to reveal the influences of decision variables on the performances of these systems, and the particle swarm optimization (PSO) algorithm is utilized to optimize the system performances. Results show that the sCO2/LiBr-H2O AHP system can obtain an improvement of 13.39% in exergy efficiency and a reduction of 8.66% in total product unit cost compared with the stand-alone sCO2 system. In addition, the sCO2/LiBr-H2O AHP system performs better than sCO2/DH system and sCO2/ammonia-water AHP system do, indicating that the LiBr-H2O AHP is a preferable bottoming cycle for heat production. The detailed parametric analysis, optimization, and comparison results may provide some references in the design and operation of sCO2/AHP system to save energy consumption and provide considerable economic benefits.


2021 ◽  
pp. 1-28
Author(s):  
Christopher M. Keinath ◽  
Jared Delahanty ◽  
Srinivas Garimella ◽  
Michael A. Garrabrant

Abstract An investigation of the best ways to achieve optimal performance from a waste-heat-driven ammonia-water absorption heat pump over a wide range of operating conditions is presented. Waste-heat is recovered using an exhaust gas heat exchanger and delivered to the desorber by a heat transfer fluid loop. The absorber and condenser are hydronically coupled in parallel to an ambient heat exchanger for heat rejection. The evaporator provides chilled water for space-conditioning with a baseline cooling capacity of 2 kW. A detailed thermodynamics model is developed to simulate performance and develop strategies to achieve the best performance in both cooling and heating modes over a range of operating conditions. These parametric studies show that improved coefficients of performance can be achieved by adjusting the coupling fluid temperatures in the evaporator and the condenser/absorber as the ambient temperature varies. With the varying return temperatures, the system is able to provide the 2 kW design cooling capacity for a wide range of ambient temperatures.


Author(s):  
Muhammad Kashif Shahzad ◽  
Yaqi Ding ◽  
Yongmei Xuan ◽  
Neng Gao ◽  
Guangming Chen

Open absorption heat pump (OAHP) system is more viable option to recover waste heat from moist gas as compared to the traditional condensation methods. This promising technology has great potential for latent heat recovery from moist gas, drying process in paper and other industrial heating applications. This study presents the process modelling and comparative analysis of OAHP system in Aspen Plus using two different solutions by adopting part regeneration technique. The promising potassium formate-water (HCOOK/H2O) which has lower causticity, lower costs and better crystallization characteristics is used as an alternative to the caustic lithium bromide-water (LiBr/H2O) solution in this study. Process model of the system is established in Aspen Plus and, the properties validity is confirmed with published experimental and Engineering Equation Solver (EES) library data. A detailed comparative parametric study is carried out to evaluate the effect of influencing parameters on coefficient of performance (COP), water recovery (φ) and heat recovery (ζ) efficiencies. The performance of OAHP system is found to be very similar using different concentrations as 2.13 COP value for 50% LiBr/H2O and 2.19 for 70% HCOOK/H2O solution over design conditions. Similarly, φ is found to be 0.701, 0.688 while ζ as 0.716 and 0.705 for both the absorbents. Moreover, the system’s operational concentration range is 45-61.3% for LiBr/H2O and 55-82.1% for HCOOK/H2O at 135 °C regeneration heat input. Potassium formate solution having quite similar properties to the aqueous lithium bromide is also confirmed to have similar performance trends using 50% and 70% concentrations.


Sign in / Sign up

Export Citation Format

Share Document