Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated concrete frame

2019 ◽  
Vol 13 (5) ◽  
pp. 1095-1104
Author(s):  
Yunlin Liu ◽  
Shitao Zhu
2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2014 ◽  
Vol 936 ◽  
pp. 1414-1418
Author(s):  
Lin Chun Zhang

In order to estimate seismic behavior of LYTAG concrete, the seismic behavior of ordinary concrete have been studied in comparison with LYTAG concrete in this article. At first it discusses the advantages of LYTAG concrete, and then it draws following conclusions through the contrast tests of LYTAG concrete and ordinary concrete and the method of finite element analysis. The seismic performance of Lytag concrete is better than that of ordinary concrete. LYTAG concrete has better social and economic benefits than ordinary concrete from the aspects of seismic fortification.


2014 ◽  
Vol 578-579 ◽  
pp. 695-698
Author(s):  
Xi Le Li ◽  
Li Hua Niu

Based on the model experiment on seismic behavior of a 1-span, 2-story concrete-filled rectangular steel tubal (CFRST) frame under lateral cyclic loads, a 3-D nonlinear finite element model of concrete-filled rectangular steel tubular frame is proposed in the paper. Compared with the experimental hysteresis curve, the computational results are found to be accurate, which shows that this model proposed in the paper can be applied in structure analysis of concrete-filled rectangular tubular frames. So the model was used in the finite element analysis of concrete-filled rectangular frame with different axial load level. Compared the computational displacement envelop curves, it concludes that the ductility and bearing capacity of CFRST frames reduces with the increasing axial load level.


2020 ◽  
Vol 198 ◽  
pp. 03012
Author(s):  
Zhenghui Qi ◽  
Xiaotong Peng ◽  
Jie Man ◽  
Chen Lin ◽  
Wenxu Duan

A new steel special-shaped lattice column (SSLC) was proposed, which can be used in prefabricated steel structure residence. The finite element models of four SSLC with different cross-section (L-shaped, T1-shaped, T2-shaped and X-shaped) were established under cyclic loading by using ABAQUS, in which the strength, lateral resist capacity and hysteretic behavior were analyzed. The results indicate that SSLC has adequate strength, stiffness and safety redundancy. Among the four SSLC, the SSLC with X-shaped has the best structural performance and seismic behavior.


Sign in / Sign up

Export Citation Format

Share Document