Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis

2016 ◽  
Vol 38 (9) ◽  
Author(s):  
Zhen Peng ◽  
Shoupu He ◽  
Wenfang Gong ◽  
Junling Sun ◽  
Zhaoe Pan ◽  
...  
BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 241 ◽  
Author(s):  
Neeraj Kumar Dubey ◽  
Ridhi Goel ◽  
Alok Ranjan ◽  
Asif Idris ◽  
Sunil Kumar Singh ◽  
...  

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Jianyong Wu ◽  
Meng Zhang ◽  
Bingbing Zhang ◽  
Xuexian Zhang ◽  
Liping Guo ◽  
...  

2020 ◽  
Author(s):  
Kashif Shahzad ◽  
Xuexian Zhang ◽  
Liping Guo ◽  
Tingxiang Qi ◽  
Lisheng Bao ◽  
...  

Abstract Background Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs. Results In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations. Phenotypically, high hybrid produced a mean of 14% more seed cotton yield than its better parent. Whole-genome RNA sequencing of these hybrids and their four inbred parents was performed using different tissues of the squaring stage. Comparative transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis identified majority of hybrids DEGs were biased towards parent like expressions. An array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation had more functional annotations in hybrids. Sugar metabolic and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis discovered genes Gh_A03G1024, Gh_D08G1440, Gh_A08G2210, Gh_A12G2183, Gh_D07G1312, Gh_D08G1467, Gh_A03G0889, Gh_A08G2199, and Gh_D05G0202 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data. Conclusions Through genome-wide comparative transcriptome analysis, the current study identified nine key genes and pathways associated with biological process of yield heterosis in upland cotton. Our results and data resources provide novel insights and will be useful for dissecting the molecular mechanism of yield heterosis in cotton


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangtao Yang ◽  
Lihua Gao ◽  
Xiaojing Liu ◽  
Xiaochun Zhang ◽  
Xujing Wang ◽  
...  

AbstractCotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.


2020 ◽  
Author(s):  
Kashif Shahzad ◽  
Xuexian Zhang ◽  
Liping Guo ◽  
Tingxiang Qi ◽  
Lisheng Bao ◽  
...  

Abstract Background: Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs. Results: In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations. Phenotypically, high hybrid produced a mean of 14% more seed cotton yield than its better parent. Whole-genome RNA sequencing of these hybrids and their four inbred parents was performed using different tissues of the squaring stage. Comparative transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis identified majority of hybrids DEGs were biased towards parent like expressions. An array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation had more functional annotations in hybrids. Sugar metabolic and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis discovered genes Gh_A03G1024, Gh_D08G1440, Gh_A08G2210, Gh_A12G2183, Gh_D07G1312, Gh_D08G1467, Gh_A03G0889, Gh_A08G2199, and Gh_D05G0202 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data. Conclusions: Through genome-wide comparative transcriptome analysis, the current study identified nine key genes and pathways associated with biological process of yield heterosis in upland cotton. Our results and data resources provide novel insights and will be useful for dissecting the molecular mechanism of yield heterosis in cotton.


2020 ◽  
Author(s):  
Kashif Shahzad ◽  
Xuexian Zhang ◽  
Liping Guo ◽  
Tingxiang Qi ◽  
Lisheng Bao ◽  
...  

Abstract Background: Utilization of heterosis has greatly enhanced the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization in cotton produces superior yield is critical for efficient plant breeding. Results: With the whole-genome RNA sequencing, here, high, medium, and low hybrids varying in level of yield heterosis were screened based on different years and locations field experimentation. Phenotypically, high Department showed a mean of 14% more seed cotton yield than its better parent. A total of 63 samples comprised of different squaring stage tissues of three hybrids and four their inbred parents were used to perform transcriptomic analysis. A comparison of transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis exposed the majority of hybrids DEGs followed parent like expressions. Functional annotations identified an array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation. Starch and sucrose metabolism and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis raveled genes GhBZR1, GhASK8, At3g43860, GhGBSS1, GhAPL2, GhMPK4, GhPHO1, GhJAZ10, and GhCRR21 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data. Conclusions: Through genome-wide comparative transcriptome analysis, the current study provides novel insights about phenomics and genomics of heterosis in upland cotton. Our results and data resources will be useful for dissecting the molecular mechanism of yield heterosis in cotton.


Sign in / Sign up

Export Citation Format

Share Document