Development of a force controlled orbital polishing head for free form surface finishing

2010 ◽  
Vol 4 (2-3) ◽  
pp. 269-277 ◽  
Author(s):  
Christian Brecher ◽  
Roland Tuecks ◽  
Richard Zunke ◽  
Christian Wenzel
2018 ◽  
Vol 25 (s2) ◽  
pp. 158-163
Author(s):  
Bi-Rong Ding ◽  
Yuan-long Chen ◽  
Ji Zhou ◽  
Pei-xuan Chen

Abstract An electrolysis process method for free-form blade surface finishing is proposed for a free-form surface impeller, and a stepwise method is used to process the inter-blade channel of the overall impeller. The forming cathode is then used to finish the blade to meet the blade processing requirements. In the design, the forming cathode structure was improved by using motion simulation software, and the flow field simulation software was used to simulate and analyze the cathode flow channel. The cathode shape and the electrolyte flow rate between the electrodes meet the processing requirements. In the process of processing experiments, the motion path of the cathode was analyzed and optimized. The effect of the feed direction on the uneven distribution of the blade machining gap was reduced through optimization, and high-frequency pulse power processing was used to reduce the machining gap and improve the machining accuracy of the blade. The experimental results show that the process scheme is feasible and the precision of the processed impeller free-form surface is significantly improved. The material is a monolithic turbine disk of high-temperature alloys, and its large twisted blade processing has always been a problem in the manufacturing industry.


2016 ◽  
Vol 686 ◽  
pp. 51-56 ◽  
Author(s):  
Jozef Beňo ◽  
Ildikó Maňková ◽  
Dagmar Draganovská ◽  
Peter Ižol

In this paper, author introduce common needs of increasing surface quality in tool making, a sort of products manufactured by free form milling technology. Principles of the free-form surface decomposition into measurable samples are presented and that is a method of combining CAD modeling with design of sampling objects. Sampling objects are classed both according to their measurability and applied milling strategy. Authors verify experimentally their sampling approach for three milling strategies applied in surface finishing operations while free-form surfaces are investigated in terms of their signed radii. Verification of proposed approach is based on statistical distribution of the measured surface roughness data.


2021 ◽  
Vol 28 (1) ◽  
pp. 113-118
Author(s):  
Bin Chen ◽  
Quanying Wu ◽  
Junliu Fan

Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.


Author(s):  
P. A. van Elsas ◽  
J. S. M. Vergeest

Abstract Surface feature design is not well supported by contemporary free form surface modelers. For one type of surface feature, the displacement feature, it is shown that intuitive controls can be defined for its design. A method is described that, given a surface model, allows a designer to create and manipulate displacement features. The method uses numerically stable calculations, and feedback can be obtained within tenths of a second, allowing the designer to employ the different controls with unprecedented flexibility. The algorithm does not use refinement techniques, that generally lead to data explosion. The transition geometry, connecting a base surface to a displaced region, is found explicitly. Cross-boundary smoothness is dealt with automatically, leaving the designer to concentrate on the design, instead of having to deal with mathematical boundary conditions. Early test results indicate that interactive support is possible, thus making this a useful tool for conceptual shape design.


Sign in / Sign up

Export Citation Format

Share Document