Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis

2009 ◽  
Vol 86 (6) ◽  
pp. 507-511 ◽  
Author(s):  
Rasha M. El-Abassy ◽  
Patrice Donfack ◽  
Arnulf Materny
2018 ◽  
Vol 12 (3) ◽  
Author(s):  
E. Ghanbari Shend ◽  
D. Sivri Ozay ◽  
M . T. Ozkaya ◽  
N. F. Ustunelc

In this study Turkish monocultivar extra virgin olive oil (EVOO) “Sarı Ulak” was extracted by using the Mobile Olive Oil Processing Unit (TEM Oliomio 500-2GV, Italy). Changes in minor and major components and quality characteristics, free fatty acid content, peroxide value and UV absorbance value, were surveyed during a year’s storage period. “Sarı Ulak” olive oil samples were classified as EVOO according to the trade standards of the International Olive Council (IOC) based on free fatty acid, peroxide value, K232 and ΔK values up to the eighth month of the storage period. The results have shown that color values of EVOO changed from green to yellow slowly while UV absorbance values changed during storing. Total polyphenol content of extra virgin olive oil decreased from 205.17 ppm to 144.29 ppm during a year’s storage. Luteolin was the most abundant phenolic compound, and its concentration changed from 184.33 ppm to 115.06 ppm. Apigenin concentration was differed from 2.67 to 1.06 ppm during storing. The initial level of α-tocopherol contents was 184.51 ppm, it decreased to 147 ppm at the end of storage time. After 12 months of storing, about 20 % of α-tocopherol content was destroyed. The amounts of phenolic and tocopherol isomers decreased during storage as expected.


2019 ◽  
Vol 11 (1) ◽  
pp. 52-58
Author(s):  
Esmael Ghanbari Shendi ◽  
Dilek Sivri Özay ◽  
Mücahit Taha Özkaya ◽  
Nim,eti Feyza Üstünel

Turkish olive cultivar known as “Halhalı” that is locally grown in Mardin (Derik) province, situated in the southeast Anatolia, was used for virgin olive oil (VOO) production. Halhalı olive was processed in the “Mobile Olive Oil Processing Unit” (TEM Oliomio 500-2GV, Italy) designed as the first mobile olive mill in Turkey. Some chemical and physical properties (colour, UV absorbance values, free fatty acid content, peroxide value, phenolic and tocopherol profiles) were determined and monitored during one year of storing in the dark at room temperature once in every three months. Results showed that up to the eighth month of storage, free fatty acid content, peroxide and UV-absorption values (K232 and K232 values) did not exceed the limits reported by International Olive Council (IOC) and olive oils were categorized as Extra Virgin Olive Oil (EVOO). Colour changed from green to yellow and UV absorbance values altered during storage. Total phenol and vitamin E (α- tocopherol) contents decreased by 18% and 16.38%, respectively. Luteolin and apigenin were the most abundant phenolics and their contents decreased up to 22% and 28% during storing, respectively.


OCL ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. A602 ◽  
Author(s):  
Esmaeil Ghanbari Shendi ◽  
Dilek Sivri Ozay ◽  
Mucahit Taha Ozkaya ◽  
Nimeti Feyza Ustunel

In present study, “Saurani” Turkish olive monocultivar extra virgin olive oil (EVOO) was extracted by using Mobile Olive Oil Processing Unit (MOOPU)” (TEM Oliomio 500-2GV, Italy). Free fatty acid content, peroxide value, moisture content and UV absorbance value, minor and major components and quality characteristics changes were surveyed during a year storage. “Saurani” olive oil samples weren’t categorized as EVOO according to the trade standards of International Olive Council (IOC) based on peroxide value, UV absorbance values after five and two months of storing, respectively. Free fatty acid content of VOO samples increased during 12 months’ storage, but it was under the IOC limitation for extra virgin olive oil (< 0.8%). According to the results, color values of VOO changed from green to yellow while UV absorbance values altered during storage. Total phenol content decreased from 342.95 to 252.42 ppm in EVOO samples during a year storage time. Luteolin was the most abundant phenolic compound and its decrement was 10%. Tyrosol content of VOO samples increased from 2.80 to 8.81 ppm. Except tyrosol, other phenolic compounds’ concentration decreased after a year storage time. α-tocopherol contents of VOO sample were 324.60 ppm. After 12 months of storage, about 20.48% of α-tocopherol content was destroyed. Amounts of phenolic and tocopherol isomers decreased during storage as expected. Results of this study showed that chemical composition and oxidative stability of VOO samples changed significantly.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
E. Ghanbari Shendi ◽  
D. Sivri Ozay ◽  
M.T. Ozkaya ◽  
N.F. Ustunel

Upper Mesopotamia is a part of Turkish territory is the homeland of the olive tree with a wide range genetic resource. This is the first report on chemical composition and oxidative stability of olive oil extracted from Uslu cultivar grown locally in a small amount.  In this research, a Turkish olive cultivar named as “Uslu” locally grown in Akhisar was used for production of monocultivar extra virgin olive oil by using Mobile Olive Oil Processing Unit”. Olive oil samples were bottled before and after filtration and stored up to 24 months. Some chemical properties such as free fatty acid content, peroxide value, moisture content, UV absorbance value, minor and major components (fatty acid composition, tocopherols, total phenol compounds and phenolic composition), were determined during storage for 24 months. Chemical parameters such as free fatty acid, peroxide value except UV absorption values of both filtered and unfiltered “Uslu” olive oil samples were in agreement with the trade standards of International Olive Council (IOC). Color values of EVOO changed from green to yellow while UV absorbance values altered during storage. Very low free fatty acidy (0.2%) values which are unusual for commercial olive oils in Turkey were obtained for filtered and unfiltered samples. A slight increase was seen for unfiltered sample at the end of storage.  Filtration had no detectable effect on fatty acid profile. Filtered sample had higher total phenols (407.64±4.051 ppm) and α-tocopherol (237 and 123.31 ppm) contents than unfiltered ones and their contents decreased approximately 50% at the end of storage. Luteolin was the most abundant phenolic compound and its concentration decreased from 268.65±5.428 to 93.57±0.541ppm during storage. It seemed effect of filtration was more obvious on total phenolic contents. This study was good practice for producing premium extra virgin olive oil by using Mobile Olive Oil Processing Unit. The results obtained in this study showed that Uslu olive oils has a unique chemical composition and a good oxidative stability with high tocopherols and phenolics contents that are uncommon in most of the commercial olive oils.


2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Author(s):  
Antonella Maria Aresta ◽  
Nicolella De Vietro ◽  
Maria Lisa Clodoveo ◽  
Riccardo Amirante ◽  
Filomena Corbo ◽  
...  

2014 ◽  
Vol 3 (4) ◽  
pp. 119 ◽  
Author(s):  
Raffaele Romano ◽  
Nadia Manzo ◽  
Immacolata Montefusco ◽  
Annalisa Romano ◽  
Antonello Santini

<p>In this study the use of liquid carbon dioxide, CO<sub>2</sub>, for extraction of oil from olive paste (<em>Peranzana cultivar</em>)<strong> </strong>were examined and extracted oil was compared with oils obtained by centrifugation, pressure and use of chemical solvent.</p> <p>It is well known that the use of CO<sub>2</sub> has many advantages: miscibility with a wide range of molecules, food safety, non-flammability, absence of residues in the extract, possibility of total solvent recovery and no production of olive mill waste water that are highly polluting for the environment and require expansive disposal.</p> <p>Samples were subjected to the following analyses: determination of Free Fatty Acids (FFA), Peroxides Value (PV), Spectrophotometric Indices, Fatty Acids Composition (FA), determination of biophenols content and determination of Volatile Organic Compounds (VOCs). All samples showed FFA, PV and ?K values within the limits established by law for extra-virgin olive oil. The use of CO<sub>2</sub> did not catalyze hydrolysis, oxidation and condensation of double bonds. Centrifuged oils and oils extracted with carbon dioxide presented the lowest PV and FFA values. Extraction with liquid carbon dioxide contributed to an increasing of phenolic content with a value of 270.5 mg/kg, a value twice that of the oils extracted with centrifugation (135.3 mg/kg) or pressure methods (173.2 mg/kg). Oil extracted with liquid carbon dioxide showed the greatest amount of t-2-octenal and t-2-heptenal, giving herbaceous and pungent notes. Moreover the presence of aromatic compounds such as limonene, generally absent in olive oils, was only detected in the sample extracted with liquid carbon dioxide.</p>


2017 ◽  
Vol 14 (9) ◽  
pp. 095603 ◽  
Author(s):  
Naveed Ahmad ◽  
M Saleem ◽  
H Ali ◽  
M Bilal ◽  
Saranjam Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document