Quantitative estimation on contributions of climate changes and human activities to decreasing runoff in Weihe River Basin, China

2015 ◽  
Vol 25 (5) ◽  
pp. 569-581 ◽  
Author(s):  
Shengzhi Huang ◽  
Qiang Huang ◽  
Yutong Chen
2016 ◽  
Vol 48 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Dengfeng Liu ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

The main goal of this study is to introduce the Archimedean copulas, which overcome the low accuracy and subjective nature of the traditional double mass curve method, to investigate the precipitation–runoff relationship (PRR) and detect change points in the Weihe River Basin (WRB). With the construction of a joint distribution between precipitation and runoff by the Archimedean copulas, a statistical variable considering the distribution parameter was estimated to judge the change point of the PRR. The results show that: (1) annual precipitation and runoff present decreasing trends that are significant and insignificant, respectively, at the 95% significance level, while annual potential evapotranspiration (PET) increases slightly; (2) change points of the PRR occurred in 1971 and 1994; (3) the annual runoff changed more dramatically than precipitation during the periods from 1972 to 1994 and 1995 to 2010 compared with 1960–1971, which indicates that in addition to precipitation, there are some other non-precipitation factors that are responsible for the change in the PRR; and (4) the contributions to runoff from human activities declined from 1972 to 1994 (84.15%) and 1995 to 2010 (57.16%). These results suggest that human activities (e.g., irrigation, reservoirs, water-and-soil conservation) were the primary driving forces leading to changes in the PRR in the WRB.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 303
Author(s):  
Ruirui Xu ◽  
Peng Gao ◽  
Xingmin Mu ◽  
Chaojun Gu

Evapotranspiration is a key process between the atmospheric hydrological cycle and the energy cycle, which has a great significance in understanding climate change and the rational use of water resources, especially for the Weihe River basin (WRB) (a basin in China experiencing a shortage of water resources). We investigated the spatial-temporal change of actual evapotranspiration (ETa) based on the daily meteorological variables of 22 meteorological stations and the annual streamflow of three hydrological stations from 1970 to 2018 in the WRB. The contributions of key meteorological variables to ETa changes and the sensitivity coefficient are also quantified. The temporal trends of ETa showed an increasing trend from 1970 to 2018, and the spatial distribution of ETa increased from northwest to southeast in the WRB. Increasing trends were detected in the multi-year average, spring, and winter, but only a few stations passed the significance test. Summer and autumn showed a decreasing trend, but this trend was not significant. Solar radiation is the most sensitive meteorological variable, followed by vapor pressure, wind speed, and mean temperature. Vapor pressure contributes the most to ETa changes, followed by solar radiation. In general, vapor pressure (relative humidity) is the dominant meteorological factor affecting ETa in the WRB. In addition to meteorological factors, the ETa is also affected by combined and complicated factors caused by precipitation and human activities. As an important part of the hydrological cycle, ETa has important research significance for water resources management, economy, agriculture, and ecology and results of this study may be helpful to further clarify the climate change and human activities impacts on the basin hydrological cycle.


Author(s):  
H. Shen ◽  
L. Ren ◽  
F. Yuan ◽  
X. Yang

Abstract. Drought is a comprehensive phenomenon not only resulting from precipitation deficits and climatic factors, but also being related to terrestrial hydrologic conditions and human activities. This paper investigated the relationships among regional hydrologic drought, climate extremes and human activities in the Weihe River basin, northwest China, where is also called Guanzhong Plain. First, the study period was divided into baseline and variation period according to the runoff trend analysis. Subsequently, the variable infiltration capacity (VIC) macroscale distributed hydrologic model was applied to reconstruct the natural runoff series in variation period. Furthermore, the effects of climate change and human activities on runoff were separated by the modelling results. Finally, standardized runoff index (SRI) and extreme climate indices were generated to quantatively assess the relationships among hydrologic droughts, climate extremes and human activity impacts. The results indicated that human activity impacts is a remarkable source of runoff reduction and represented an in-phase pattern of SRI-based drought severity and warm days. It also showed that the SRI-based floods and droughts characteristics are in good correlation with extreme precipitation.


2015 ◽  
Vol 380-381 ◽  
pp. 169-179 ◽  
Author(s):  
Jianxia Chang ◽  
Yimin Wang ◽  
Erkan Istanbulluoglu ◽  
Tao Bai ◽  
Qiang Huang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowan Liu ◽  
Dingzhi Peng ◽  
Zongxue Xu

Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.


Sign in / Sign up

Export Citation Format

Share Document