scholarly journals Spatial-Temporal Change of Actual Evapotranspiration and the Causes Based on the Advection–Aridity Model in the Weihe River Basin, China

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 303
Author(s):  
Ruirui Xu ◽  
Peng Gao ◽  
Xingmin Mu ◽  
Chaojun Gu

Evapotranspiration is a key process between the atmospheric hydrological cycle and the energy cycle, which has a great significance in understanding climate change and the rational use of water resources, especially for the Weihe River basin (WRB) (a basin in China experiencing a shortage of water resources). We investigated the spatial-temporal change of actual evapotranspiration (ETa) based on the daily meteorological variables of 22 meteorological stations and the annual streamflow of three hydrological stations from 1970 to 2018 in the WRB. The contributions of key meteorological variables to ETa changes and the sensitivity coefficient are also quantified. The temporal trends of ETa showed an increasing trend from 1970 to 2018, and the spatial distribution of ETa increased from northwest to southeast in the WRB. Increasing trends were detected in the multi-year average, spring, and winter, but only a few stations passed the significance test. Summer and autumn showed a decreasing trend, but this trend was not significant. Solar radiation is the most sensitive meteorological variable, followed by vapor pressure, wind speed, and mean temperature. Vapor pressure contributes the most to ETa changes, followed by solar radiation. In general, vapor pressure (relative humidity) is the dominant meteorological factor affecting ETa in the WRB. In addition to meteorological factors, the ETa is also affected by combined and complicated factors caused by precipitation and human activities. As an important part of the hydrological cycle, ETa has important research significance for water resources management, economy, agriculture, and ecology and results of this study may be helpful to further clarify the climate change and human activities impacts on the basin hydrological cycle.

2019 ◽  
Vol 11 (19) ◽  
pp. 5295 ◽  
Author(s):  
Shuoyang Li ◽  
Guiyu Yang ◽  
Hao Wang

The runoff levels of the major hydrological stations in the Weihe river basin (WRB) have been found to present decreasing trends. However, the conspicuous spatial differences in the hydro-meteorological conditions have led to variations in the rainfall–runoff pattern in each of the sub-basin areas. The aims of this research study were to reveal the main factors contributing to the runoff changes in the different regions—and it has significance in the water resources rational allocation and protection in the different regions. Three statistical methods were used to analyze the law of precipitation and runoffs of five hydrological stations. The SWAT (Soil and Water Assessment Tool) model was used to reconstruct the runoff in the impact period. The effects of climate change and human activity on runoff were separated by comparing measured runoff and reconstructed runoff. The results show that the closer the proximity to the downstream hydrological station, the more the runoff decreased. In the tributaries and upstream hydrological stations (Zhuanhtou (ZT), Zhangjiashan (ZJS), and Linjiacun (LJC)), from 1970 to 2016, the dominant factor of the runoff reduction was determined to be climate change, and accounted for 148.2%, 98.9%, and 90.5%, respectively. In the hydrological stations of middle and lower reaches (Xianyang (XY) and Huaxian (HX)), the contributions of the climate change to the runoff reduction were 49.7% and 44.3%, respectively, and the impacts of human activity accounted for 50.3% and 55.7%. The impacts of human activity on the runoff reduction were slightly greater than that of the climate change. Due to the different leading factors affecting runoff change in the basin, in response to future climate change, for tributaries and upstream areas, land use should be rationally planned to achieve the optimal balance of water volume in each part of the basin, which is of great significance to the protection and utilization of water resources. As for the middle and downstream regions, reasonable planning should also be focused on the amount of water withdraw, water resource allocations, and water conservancy project construction. According to the factors affecting runoff, corresponding strategies are proposed for different regions, which have important research significance for the protection and sustainable development of watershed water resources.


2015 ◽  
Vol 380-381 ◽  
pp. 169-179 ◽  
Author(s):  
Jianxia Chang ◽  
Yimin Wang ◽  
Erkan Istanbulluoglu ◽  
Tao Bai ◽  
Qiang Huang ◽  
...  

Author(s):  
F. Yuan ◽  
Y. Y. San ◽  
Y. Li ◽  
M. Ma ◽  
L. Ren ◽  
...  

Abstract. In this study, a framework to project the potential future climate change impacts on extreme hydrological drought events in the Weihe River basin in North China is presented. This framework includes a large-scale hydrological model driven by climate outputs from a regional climate model for historical streamflow simulations and future streamflow projections, and models for univariate drought assessment and copula-based bivariate drought analysis. It is projected by the univariate drought analysis that future climate change would lead to increased frequencies of extreme hydrological drought events with higher severity. The bivariate drought assessment using copula shows that future droughts in the same return periods as historical droughts would be potentially longer and more severe, in terms of drought duration and severity. This trend would deteriorate the hydrological drought situation in the Weihe River basin. In addition, the uncertainties associated with climate models, hydrological models, and univariate and bivariate drought analysis should be quantified in the future research to improve the reliability of this study.


2016 ◽  
Vol 8 (1) ◽  
pp. 62-77 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Qiang Huang ◽  
Yimin Wang ◽  
Dengfeng Liu ◽  
...  

Fully elucidating the precipitation–runoff relationship (PRR) is of great significance for better water resources planning and management and understanding hydrological cycle processes. For investigating the multi-scale PRR variability in the Weihe River basin in 1960–2010, a new hybrid method is proposed in which ensemble empirical mode decomposition (EEMD) and cross wavelet transform and wavelet transform coherence are used in combination. With the application of mutual information entropy, monthly precipitation and runoff are decomposed into two parts: high- (HFC) and low-frequency components (LFC). The results show that HFCs are characterized by inter- and intra-annual variations in precipitation and runoff, whereas LFCs display approximately two-year periodicity and contain abundant abnormal information of the raw data. Therefore, the PRR between HFCs exhibited significant correlations at the 95% confidence level over the whole time period. However, the correlations of the PRR between LFCs are not significant for many of the time-frequency domains. Additionally, the phase relations are disordered in these time-frequency domains, and no certain trend in phase angle variations can be identified. Through comparative analysis of the anthropogenic activities and climatic events with PRR variations, it can be concluded that the hybrid method can efficiently capture the PRR in various time-frequency domains.


2016 ◽  
Vol 48 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Dengfeng Liu ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

The main goal of this study is to introduce the Archimedean copulas, which overcome the low accuracy and subjective nature of the traditional double mass curve method, to investigate the precipitation–runoff relationship (PRR) and detect change points in the Weihe River Basin (WRB). With the construction of a joint distribution between precipitation and runoff by the Archimedean copulas, a statistical variable considering the distribution parameter was estimated to judge the change point of the PRR. The results show that: (1) annual precipitation and runoff present decreasing trends that are significant and insignificant, respectively, at the 95% significance level, while annual potential evapotranspiration (PET) increases slightly; (2) change points of the PRR occurred in 1971 and 1994; (3) the annual runoff changed more dramatically than precipitation during the periods from 1972 to 1994 and 1995 to 2010 compared with 1960–1971, which indicates that in addition to precipitation, there are some other non-precipitation factors that are responsible for the change in the PRR; and (4) the contributions to runoff from human activities declined from 1972 to 1994 (84.15%) and 1995 to 2010 (57.16%). These results suggest that human activities (e.g., irrigation, reservoirs, water-and-soil conservation) were the primary driving forces leading to changes in the PRR in the WRB.


Author(s):  
H. Shen ◽  
L. Ren ◽  
F. Yuan ◽  
X. Yang

Abstract. Drought is a comprehensive phenomenon not only resulting from precipitation deficits and climatic factors, but also being related to terrestrial hydrologic conditions and human activities. This paper investigated the relationships among regional hydrologic drought, climate extremes and human activities in the Weihe River basin, northwest China, where is also called Guanzhong Plain. First, the study period was divided into baseline and variation period according to the runoff trend analysis. Subsequently, the variable infiltration capacity (VIC) macroscale distributed hydrologic model was applied to reconstruct the natural runoff series in variation period. Furthermore, the effects of climate change and human activities on runoff were separated by the modelling results. Finally, standardized runoff index (SRI) and extreme climate indices were generated to quantatively assess the relationships among hydrologic droughts, climate extremes and human activity impacts. The results indicated that human activity impacts is a remarkable source of runoff reduction and represented an in-phase pattern of SRI-based drought severity and warm days. It also showed that the SRI-based floods and droughts characteristics are in good correlation with extreme precipitation.


2018 ◽  
Vol 11 (1) ◽  
pp. 241-257 ◽  
Author(s):  
Sicheng Wan ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Lu Zhang ◽  
Lei Cheng ◽  
...  

Abstract Investigating long-term streamflow changes pattern and its response to climate and human factors is of crucial significance to understand the hydrological cycle under a changing environment. Caijiazhuang catchment located within Haihe River basin, north China was selected as the study area. To detect the trend and changes in streamflow, Mann–Kendall test was used. Elasticity and hydrological simulation methods were applied to assess the relative contribution of climate change and human activities on streamflow variability under three periods (baseline (1958–1977), impact I (1978–1997), and impact II (1998–2012)). The long-term hydro-climatic variables experienced substantial changes during the whole study period, and 1977 was the breaking year of streamflow change. Attribution analysis using the two methods showed consistent results: for impact I, climate change impacts explained 65% and 68% of streamflow reduction; however for impact II, it only represented 49% and 56% of streamflow reduction. This result indicated that human activities were intensifying over time. Various types of human activities presented significant effects on streamflow regimes including volumes and hydrographs. The findings of this paper could provide better insights of hydrological evolution and would thus assist water managers in sustainably managing and providing water use strategies under a changing environment.


Author(s):  
Y. Jia ◽  
N. Wei ◽  
C. Hao ◽  
J. You ◽  
C. Niu ◽  
...  

Abstract. The water resources situation in the water-stressed Weihe River Basin, China, is more serious now than ever before because of a decrease in water resources and socio-economic development. A "Zero increase of socio-economic water use" in recent years gives people a wrong understanding and conceals the water crisis in the basin because the socio-economic water consumption has actually increased. Water use for the hydro-ecological system has been greatly reduced by a decrease in water resources and socio-economic water consumption increase. New concepts of hierarchical water uses for every sector and water consumption control are suggested for coordinating water uses of the socio-economy and ecosystems in the water-stressed basin. The traditional water resources allocation and regulation in China usually set up a priority sequence for water use sectors. Generally speaking, domestic water use has the highest priority and a highest guarantee rate, followed by industrial water use, irrigation and lastly ecological water use. The concept of hierarchical water use for every sector is to distinguish the water use of every sector into minimum part, appropriate part, and expected extra part with different guarantee rates, and the minimum parts of all sectors should be first guaranteed. By applying a water allocation model, we compared the water allocation results of the traditional approach and the newly suggested approach. Although further study is desired, the results are believed to be of an important referential value to sustainable development in the basin.


Sign in / Sign up

Export Citation Format

Share Document