Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China

Author(s):  
Te Zhang ◽  
Xiaoling Su ◽  
Gengxi Zhang ◽  
Haijiang Wu ◽  
Guanzhi Wang ◽  
...  
2014 ◽  
Vol 11 (5) ◽  
pp. 487-494
Author(s):  
Yujuan Wang ◽  
Shudong Wang ◽  
Shengtian Yang ◽  
Yuling Zhao ◽  
Mingcheng Wang ◽  
...  

The remote sensing data have become the irreplaceable source of data for the regions with little or without rainfall data, but these data also require scientific analysis, correction and application. This paper uses FY-2 rainfall data and the case studies of the droughts occurred in the Weihe River Basin from 2006 to 2009 to monitor the spatial and temporal evolution of climatic droughts. The monitoring results indicate that: (1) Except for 2008 which was a dry year, the other years in the Weihe River Basin had normal dry/wet conditions; (2) From October 2008 to January 2009, the rainfall was significantly reduced across the Weihe River Basin, and the continual rainfall was even less than 1 mm for December and January with a precipitation anomaly percentage lower than -80%, a sign of severe climatic drought. But the rainfall has improved since February 2009, when the precipitation reached 17.8 mm and Pa exceeded 100%, which helped to relieve the stress from drought resistance. A heavy precipitation continued for four months from June to September 2008, with the Pa exceeding 50%; (3) Due to the better temporal and spatial continuity than the ground-based meteorological observation, FY-2 precipitation data have good application prospects in the meteorological drought monitoring at a national or regional macro-scale.


Author(s):  
F. Yuan ◽  
Y. Y. San ◽  
Y. Li ◽  
M. Ma ◽  
L. Ren ◽  
...  

Abstract. In this study, a framework to project the potential future climate change impacts on extreme hydrological drought events in the Weihe River basin in North China is presented. This framework includes a large-scale hydrological model driven by climate outputs from a regional climate model for historical streamflow simulations and future streamflow projections, and models for univariate drought assessment and copula-based bivariate drought analysis. It is projected by the univariate drought analysis that future climate change would lead to increased frequencies of extreme hydrological drought events with higher severity. The bivariate drought assessment using copula shows that future droughts in the same return periods as historical droughts would be potentially longer and more severe, in terms of drought duration and severity. This trend would deteriorate the hydrological drought situation in the Weihe River basin. In addition, the uncertainties associated with climate models, hydrological models, and univariate and bivariate drought analysis should be quantified in the future research to improve the reliability of this study.


Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2019 ◽  
Vol 20 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Feng Ma ◽  
Lifeng Luo ◽  
Aizhong Ye ◽  
Qingyun Duan

Abstract Meteorological and hydrological droughts can bring different socioeconomic impacts. In this study, we investigated meteorological and hydrological drought characteristics and propagation using the standardized precipitation index (SPI) and standardized streamflow index (SSI), over the upstream and midstream of the Heihe River basin (UHRB and MHRB, respectively). The correlation analysis and cross-wavelet transform were adopted to explore the relationship between meteorological and hydrological droughts in the basin. Three modeling experiments were performed to quantitatively understand how climate change and human activities influence hydrological drought and propagation. Results showed that meteorological drought characteristics presented little difference between UHRB and MHRB, while hydrological drought events are more frequent in the MHRB. In the UHRB, there were positive relationships between meteorological and hydrological droughts, whereas drought events became less frequent but longer when meteorological drought propagated into hydrological drought. Human activities have obviously changed the positive correlation to negative in the MHRB, especially during warm and irrigation seasons. The propagation time varied with seasonal climate characteristics and human activities, showing shorter values due to higher evapotranspiration, reservoir filling, and irrigation. Quantitative evaluation showed that climate change was inclined to increase streamflow and propagation time, contributing from −57% to 63%. However, more hydrological droughts and shorter propagation time were detected in the MHRB because human activities play a dominant role in water consumption with contribution rate greater than (−)89%. This study provides a basis for understanding the mechanism of hydrological drought and for the development of improved hydrological drought warning and forecasting system in the HRB.


2016 ◽  
Vol 48 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Dengfeng Liu ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

The main goal of this study is to introduce the Archimedean copulas, which overcome the low accuracy and subjective nature of the traditional double mass curve method, to investigate the precipitation–runoff relationship (PRR) and detect change points in the Weihe River Basin (WRB). With the construction of a joint distribution between precipitation and runoff by the Archimedean copulas, a statistical variable considering the distribution parameter was estimated to judge the change point of the PRR. The results show that: (1) annual precipitation and runoff present decreasing trends that are significant and insignificant, respectively, at the 95% significance level, while annual potential evapotranspiration (PET) increases slightly; (2) change points of the PRR occurred in 1971 and 1994; (3) the annual runoff changed more dramatically than precipitation during the periods from 1972 to 1994 and 1995 to 2010 compared with 1960–1971, which indicates that in addition to precipitation, there are some other non-precipitation factors that are responsible for the change in the PRR; and (4) the contributions to runoff from human activities declined from 1972 to 1994 (84.15%) and 1995 to 2010 (57.16%). These results suggest that human activities (e.g., irrigation, reservoirs, water-and-soil conservation) were the primary driving forces leading to changes in the PRR in the WRB.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 303
Author(s):  
Ruirui Xu ◽  
Peng Gao ◽  
Xingmin Mu ◽  
Chaojun Gu

Evapotranspiration is a key process between the atmospheric hydrological cycle and the energy cycle, which has a great significance in understanding climate change and the rational use of water resources, especially for the Weihe River basin (WRB) (a basin in China experiencing a shortage of water resources). We investigated the spatial-temporal change of actual evapotranspiration (ETa) based on the daily meteorological variables of 22 meteorological stations and the annual streamflow of three hydrological stations from 1970 to 2018 in the WRB. The contributions of key meteorological variables to ETa changes and the sensitivity coefficient are also quantified. The temporal trends of ETa showed an increasing trend from 1970 to 2018, and the spatial distribution of ETa increased from northwest to southeast in the WRB. Increasing trends were detected in the multi-year average, spring, and winter, but only a few stations passed the significance test. Summer and autumn showed a decreasing trend, but this trend was not significant. Solar radiation is the most sensitive meteorological variable, followed by vapor pressure, wind speed, and mean temperature. Vapor pressure contributes the most to ETa changes, followed by solar radiation. In general, vapor pressure (relative humidity) is the dominant meteorological factor affecting ETa in the WRB. In addition to meteorological factors, the ETa is also affected by combined and complicated factors caused by precipitation and human activities. As an important part of the hydrological cycle, ETa has important research significance for water resources management, economy, agriculture, and ecology and results of this study may be helpful to further clarify the climate change and human activities impacts on the basin hydrological cycle.


Author(s):  
H. Shen ◽  
L. Ren ◽  
F. Yuan ◽  
X. Yang

Abstract. Drought is a comprehensive phenomenon not only resulting from precipitation deficits and climatic factors, but also being related to terrestrial hydrologic conditions and human activities. This paper investigated the relationships among regional hydrologic drought, climate extremes and human activities in the Weihe River basin, northwest China, where is also called Guanzhong Plain. First, the study period was divided into baseline and variation period according to the runoff trend analysis. Subsequently, the variable infiltration capacity (VIC) macroscale distributed hydrologic model was applied to reconstruct the natural runoff series in variation period. Furthermore, the effects of climate change and human activities on runoff were separated by the modelling results. Finally, standardized runoff index (SRI) and extreme climate indices were generated to quantatively assess the relationships among hydrologic droughts, climate extremes and human activity impacts. The results indicated that human activity impacts is a remarkable source of runoff reduction and represented an in-phase pattern of SRI-based drought severity and warm days. It also showed that the SRI-based floods and droughts characteristics are in good correlation with extreme precipitation.


2021 ◽  
Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Zhenxin Bao ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


Sign in / Sign up

Export Citation Format

Share Document