Application of sparse time-frequency decomposition to seismic data

2014 ◽  
Vol 11 (4) ◽  
pp. 447-458 ◽  
Author(s):  
Xiong-Wen Wang ◽  
Hua-Zhong Wang
Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. V245-V254
Author(s):  
Yangkang Chen

Time-frequency analysis is a fundamental approach to many seismic problems. Time-frequency decomposition transforms input seismic data from the time domain to the time-frequency domain, offering a new dimension to probe the hidden information inside the data. Considering the nonstationary nature of seismic data, time-frequency spectra can be obtained by applying a local time-frequency transform (LTFT) method that matches the input data by fitting the Fourier basis with nonstationary Fourier coefficients in the shaping regularization framework. The key part of LTFT is the temporal smoother with a fixed smoothing radius that guarantees the stability of the nonstationary least-squares fitting. We have developed a new LTFT method to handle the nonstationarity in all time, frequency, and space ( x and y) directions of the input seismic data by extending fixed-radius temporal smoothing to nonstationary smoothing with a variable radius in all physical dimensions. The resulting time-frequency transform is referred to as the nonstationary LTFT method, which could significantly increase the resolution and antinoise ability of time-frequency transformation. There are two meanings of nonstationarity, i.e., coping with the nonstationarity in the data by LTFT and dealing with the nonstationarity in the model by nonstationary smoothing. We evaluate the performance of our nonstationary LTFT method in several standard seismic applications via synthetic and field data sets, e.g., arrival picking, quality factor estimation, low-frequency shadow detection, channel detection, and multicomponent data registration, and we benchmark the results with the traditional stationary LTFT method.


2016 ◽  
Vol 4 (4) ◽  
pp. T533-T542 ◽  
Author(s):  
Yangkang Chen

The high-resolution mapping of karst features is of great importance to hydrocarbon discovery and recovery in the resource exploration field. Currently, however, there are few effective methods specifically tailored for such a task. The 3D seismic data can reveal the existence of karsts to some extent, but a precise characterization cannot be obtained. I have developed an effective framework for accurately probing the subsurface karst features using a well-developed time-frequency decomposition algorithm. More specifically, I have introduced a frequency interval analysis approach for obtaining the best karsts detection result using an optimal frequency interval. A high-resolution time-frequency transform was preferred in the proposed framework to capture the inherent frequency components hidden behind the amplitude map. Although the single-frequency slice could not provide a reliable karst depiction result, the summation over the selected frequency interval could obtain a high-resolution and high-fidelity delineation of subsurface karsts. I used a publicly available 3D field seismic data set as an example to indicate the performance of the proposed method.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. V207-V217 ◽  
Author(s):  
Hamid Sattari ◽  
Ali Gholami ◽  
Hamid R. Siahkoohi

The variation of frequency content of a seismic trace with time carries information about the properties of the subsurface reflectivity sequence. Time-frequency (TF) analysis is a significant tool to extract such information for seismostratigraphic interpretation purposes. However, several TF transforms have been reported in the literature; higher resolution and sensitivity to local changes of the signal have always mattered. We have developed an adaptive high-resolution TF transform that is performed in two sequential steps: First, the window length is adaptively determined for each sample of the signal such that it leads to maximum compactness of energy in the resulting TF plane. Second, the generated nonstationary windows are used to inversely decompose the signal under study via a convex constrained sparse optimization, where a mixed norm of the TF coefficients is minimized subject to invertibility of the transform. Later on, the optimized transform is used as an efficient tool for seismic data analysis such as thin-bed characterization and thin-bedded gas reservoir detection. In the case of gas reservoir detection, based on amplitude versus offset analysis in the TF domain, a simple new method called the difference section was evaluated. The results of various numerical examples from synthetic and field data revealed a remarkable performance of the proposed method compared with the state-of-the-art TF transforms.


2017 ◽  
Vol 5 (1) ◽  
pp. SC9-SC16 ◽  
Author(s):  
Rui Zhang ◽  
Sergey Fomel

Seismic impedance inversion has been widely used to estimate subsurface properties. Conventional inversion assumes that seismic data are the convolution result of seismic wavelet and reflectivity, implying that seismic data are stationary when a constant wavelet is considered. However, seismic data are nonstationary because of noise contamination and attenuation during wave propagation, which means that the frequency spectrum of the seismic signal changes from shallow to deep formations. We have developed a time-variant wavelet extraction method by using a local-attribute-based spectral decomposition technique. Time-variant wavelets are generated according to the local frequency spectrum, which can be used to construct a time-variant wavelet kernel matrix. By using this time-variant kernel matrix, we can obtain a better correlation between synthetic and extracted seismograms than by using constant wavelet on a field data example. Using this example, we have also compared the time-variant and constant wavelets for inverting the field data to estimate subsurface acoustic impedance. Our results showed improved resolution and a better fit to well-log-measured impedance by using the time-variant wavelets.


2019 ◽  
Vol 38 (4) ◽  
pp. 298-305
Author(s):  
Prashant Kumar Mishra ◽  
Sanjai Kumar Singh ◽  
Pradip Kumar Chaudhuri

The resolution limit of seismic data is an intricate issue that depends not only on frequency and data quality (signal-to-noise ratio) but also on the tools and technology used to analyze seismic response. In this context, the subject of thin-bed delineation is extremely significant for coal-laminated (causing large acoustic impedance contrasts) clastic sequences of the Western Onshore Basin, India. Most of the clastic reservoirs in the area are of subseismic resolution (below 10 m in thickness) due to the low dominant frequency available in seismic data (19–35 Hz). This is where improving seismic resolution is essential for a detailed structural and stratigraphic interpretation. We have implemented a modified workflow with which, by using state-of-the-art techniques of time-frequency decomposition and cepstral analysis, significant seismic bandwidth extension has been achieved. This in turn yields improved vertical resolution of the seismic data with better geologic interpretability. Our approach is named the “syn-cepstral method” after its two integral constituents — synchrosqueezing transform and cepstral analysis. Applying the syn-cepstral method produces better well-to-seismic ties and resolves additional events in comparison to the original seismic data. The validity of syn-cepstral methodology has been demonstrated by 1D and 2D modeling studies followed by application to a 3D seismic data set from the Western Onshore Basin of India. The improvement in thin-bed delineation arising from the increased bandwidth of the resultant data has been validated by well-to-seismic ties and amplitude map interpretation. Thus, while thin clastic reservoir beds in the logs show no discernible presence in the original seismic data, upon application of the syn-cepstral method, the resultant seismic data show improved interpretability of these units.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Sign in / Sign up

Export Citation Format

Share Document