Evaluating the fracture resistance and drainage difficulty of coal reservoirs using log data

2021 ◽  
Author(s):  
Zhi-di Liu ◽  
Bin-rui Yang ◽  
Xiao-yan Tang ◽  
Wei Wang ◽  
Liang Ji ◽  
...  
Keyword(s):  
KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute


2012 ◽  
Vol 3 (4) ◽  
pp. 92-94
Author(s):  
SUJATHA PADMAKUMAR ◽  
◽  
Dr.PUNITHAVALLI Dr.PUNITHAVALLI ◽  
Dr.RANJITH Dr.RANJITH

1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document