Analysis theory of spatial vibration of high-speed train and slab track system

2008 ◽  
Vol 15 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Jun Xiang ◽  
Dan He ◽  
Qing-yuan Zeng
Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Kazem Jadidi ◽  
Morteza Esmaeili ◽  
Mehdi Kalantari ◽  
Mehdi Khalili ◽  
Moses Karakouzian

Asphalt is a common material that is used extensively for roadways. Furthermore, bituminous mixes have been used in railways, both as asphalt and as mortar. Different agencies and research institutes have investigated and suggested various applications. These studies indicate the benefits of bituminous material under railways, such as improving a substructure’s stiffness and bearing capacity; enhancing its dynamic characteristics and response, especially under high-speed train loads; waterproofing the subgrade; protecting the top layers against fine contamination. These potential applications can improve the overall track structure performance and lead to minimizing settlement under heavy loads. They can also guarantee an appropriate response under high-speed loads, especially in comparison to a rigid slab track. This review paper documents the literature related to the utilization of asphalt and bituminous mixes in railway tracks. This paper presents a critical review of the research in the application of asphalt and bituminous mixes in railway tracks. Additionally, this paper reviews the design and construction recommendations and procedures for asphalt and bituminous mixes in railway tracks as practiced in different countries. This paper also provides case studies of projects where asphalt and bituminous mixes have been utilized in railway tracks. It is anticipated that this review paper will facilitate (1) the exchange of ideas and innovations in the area of the design and construction of railway tracks and (2) the development of unified standards for the design and construction of railway tracks with asphalt and bituminous mixtures.


Author(s):  
Blaine O. Peterson

This paper discusses general High Speed Rail (HSR) track geometry, construction and maintenance practices and tolerances. The discussion will reference several key international projects and highlight different construction methods and the track geometry assessments used to establish and ensure serviceability of a typical HSR system. Historically, established tighter tolerances of “Express” HSR (i.e. operating speeds greater than 240 km/h or 150 mph) systems have favored the use of slab track systems over ballasted track systems. Slab track systems offer greater inherent stability while ballasted track systems generally require more frequent track geometry assessments and anomaly-correcting surfacing operations. The decisions related to which system to use for a given application involve numerous considerations discussed only briefly in this paper. In many cases, the optimal solution may include both track forms. Rolling stock considerations and their influence on track infrastructure design are considered beyond the scope of this paper. This paper will focus predominantly on two slab track systems widely used in international HSR projects: the Japanese J-slab track system; and the German Rheda slab track system. The French track system will be referenced as the typical ballasted track HSR design. The practices discussed in this paper generally apply to systems which are either primarily or exclusively passenger rail systems. In the U.S., these types of systems will necessarily exclude the systems the Federal Railway Administration (FRA) refers to as “Emerging” or “Regional” HSR systems which include passenger train traffic to share trackage on, what are otherwise considered, primarily freight lines.


Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Minh Thi Tran ◽  
Van Hai Luong ◽  
Dongqi Jiang

In this paper, a computational scheme in conjunction with the moving element method has been proposed to investigate the dynamic response of a high-speed rail system in which the discrete sleepers on the subgrade support the railway track. The track foundation is modeled as a beam supported by uniformly spaced discrete spring-damper units. The high-speed train is modeled as a moving sprung-mass system that travels over the track. The effect of the stiffness of the discrete supports, train speed, and railhead roughness on the dynamic behavior of the train–track system has been investigated. As a comparison, the response of a continuously supported high-speed rail system that uses a foundation stiffness equivalent to that of a discretely supported track has been obtained. The difference in results between the “equivalent” continuously supported and the discretely supported high-speed rails has been compared and discussed. In general, the study found that a high-speed train that travels over a discretely supported track produces more severe vibrations than that travels over a continuously supported track of equivalent foundation stiffness.


2014 ◽  
Vol 501-504 ◽  
pp. 474-479
Author(s):  
Workuha Dagnew Assefa ◽  
Juan Juan Ren

With in the development of high-speed railway countrys China is one of the competent use of ballast less track spreader and largely applied on sub grade, in order to ensure high speed, safe and comfortable run of the train, the sub grade structure must provide smoother and more stable support for the upper track structure, but the problems caused by non uniformity sub grade structure performance are increasingly prominent. There have many serious problems such as low precision of measurement, low degree of automation, compaction mechanism, sometimes consolidation time and high interference of human factors. This paper described as the structural characteristics of longitudinal coupled prefabricated slab track System similar to bögl from German, a model for static analysis has been developed. Based on the model, the slab track element is presented. This element includes rail, rail fastening, prefabricated slab, CA mortar, and base plate and sub grade.


Author(s):  
Tuo Lei ◽  
Jian Dai ◽  
Kok Keng Ang ◽  
Kun Li ◽  
Yi Liu

This paper presents a study of the dynamic behavior of a coupled train-slab track system considering discrete rail pads. The slab track is modeled as a three-layer Timoshenko beam. The study is carried out using the moving element method (MEM). By introducing a convected coordinate system moving at the same speed as the vehicle, the governing equations of motion of the slab track are formulated in a moving frame-of-reference. By adopting Galerkin’s method, the element stiffness, mass and damping matrices of a truncated slab track in the moving coordinate system are derived. The vehicle is modeled as a multi-body with 10 degrees of freedom. The nonlinear Hertz contact model is used to account for the wheel–rail interaction. The Newmark integration method, in conjunction with a global Newton–Raphson iteration algorithm, is employed to solve the nonlinear dynamic equations of motion of the vehicle–track coupled system. The proposed MEM model of the system is validated through comparison with available results in the literature. Further study is then made to investigate the vehicle–track system accounting for track irregularities modeled as short harmonic wave forms. Results showed that irregularities with short wavelengths have a significant effect on wheel–rail contact force and rail acceleration, and the dynamic response of the track structure does not increase monotonously with the increase of the vehicle speed.


Sign in / Sign up

Export Citation Format

Share Document