Water-induced changes in strength characteristics of polyurethane polymer and polypropylene fiber reinforced sand

2021 ◽  
Vol 28 (6) ◽  
pp. 1829-1842
Author(s):  
Ying Wang ◽  
Jin Liu ◽  
Yong Shao ◽  
Xiao-fan Ma ◽  
Chang-qing Qi ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 499 ◽  
Author(s):  
Jin Liu ◽  
Zhihao Chen ◽  
Zezhuo Song ◽  
Yuxia Bai ◽  
Wei Qian ◽  
...  

1994 ◽  
Vol 9 ◽  
pp. 8-17
Author(s):  
Jiro KUWANO ◽  
Yosinori IMAMURA ◽  
Minoru SAKURAI ◽  
Tatsuo IMANARI ◽  
Takayuki KIMURA ◽  
...  

Author(s):  
Vladimir Golovanov ◽  
◽  
Nikolay Novikov ◽  
Vladimir Pavlov ◽  
Sergei Antonov ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2021 ◽  
Vol 72 (7) ◽  
pp. 824-840
Author(s):  
Hung Vu Viet ◽  
Cuong Nguyen Tuan ◽  
Duy Nguyen Huu ◽  
Tho Ngo Nguyen Ngoc ◽  
Phuoc Huynh Trong

Recently, high-performance fiber-reinforced mortar/concrete (HPFRM) has been researched and developed in many fields such as repair, maintenance, and new construction of infrastructure works due to its high strain capacity and tight crack width characteristics. Optimizing the design of mixture proportions and structures using HPFRM is still a complex mechanical and physical process, depending on the design principles, specific site conditions, and their local materials. This study aims to develop an HPFRM with low polypropylene fiber content by using locally available ingredients in Southern Vietnam to address the deficiencies commonly observed in traditional cement grout mortars. Three mixture proportions were prepared with different water-to-binder (w/b) ratios of 0.2, 0.25, and 0.3. Then, the performance of HPFRM was evaluated in both fresh and hardened stages. Additionally, the microstructural characteristics of each mix design were also assessed through scanning electron microscope observation. The experimental results showed that the optimum w/b of 0.25 and a fixed dosage of 0.6% polypropylene fiber produced positive impacts on the rheological, mechanical properties, and also ductility of the high-performance mortar. It was concluded that HPFRMs are promising for cost-effective and sustainable cement mortars.


Sign in / Sign up

Export Citation Format

Share Document