Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression

2021 ◽  
Vol 28 (6) ◽  
pp. 1857-1874
Author(s):  
Peng Li ◽  
Mei-feng Cai
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


Author(s):  
Liming Zhang ◽  
Yu Cong ◽  
Fanzhen Meng ◽  
Zaiquan Wang ◽  
Peng Zhang ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 735-739
Author(s):  
Hai Ping Ma ◽  
Li Ge Wang ◽  
Xue Wei Li

In order to analyze the stability of surrounding rocks with two groups parallel joints under different angles, a new method, DDARF (discontinuous deformation analysis for rock failure) program was adopted to investigate three cases of uniaxial compression tests of two groups parallel joints sample with the angels 30, 45 and 60. The results show the sample with 30 is least prone to be destroyed and the sample with 60 are most likely to be destroyed. Then DDARF program was also applied to investigate the underground cavern excavation process of two groups parallel joints surrounding rocks with the angels 30, 45 and 60. The results show that the stability of underground cavern with joint angel of 60 is worst in the aspect of stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ying Xu ◽  
Xiekang Zhou ◽  
Weimei Gong

Because top coal is not stable, a roadway with thick top coal often appears to mine pressure problems, such as bolt failure, cable breakage, and roof caving. In particular, these problems are more serious in rockburst mines. Based on a cable breakage case of No. 3 roadway in Xingcun coal mine, the paper analyzed the stress and elastic energy evolution law of surrounding rock and stress state of cable in the 3# roadway by means of the numerical simulation method. Thus, the cable breakage mechanism of the roadway with thick top coal in rockburst mine was revealed. Then, because surrounding rock grouting can reduce the stress concentration of surrounding rock and cable, surrounding rock grouting technology was proposed as control technology of cable breakage. Finally, parameters of surrounding rock grouting were designed and applied in the No. 3 roadway. The field results showed that surrounding rock grouting technology can be one of the solutions for cable breakage of roadway with thick top coal in rockburst mine. The research results of this paper can provide certain theoretical and practical value for mine pressure control of roadway.


2019 ◽  
Vol 38 (2) ◽  
pp. 1497-1508 ◽  
Author(s):  
Bing Zhang ◽  
Hanpeng Wang ◽  
Liang Yuan ◽  
Zhongzhong Liu ◽  
Guofeng Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document