A steam dried municipal solid waste gasification and melting process

2011 ◽  
Vol 5 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Gang Xiao ◽  
Baosheng Jin ◽  
Mingjiang Ni ◽  
Kefa Cen ◽  
Yong Chi ◽  
...  
2008 ◽  
Vol 34 (6) ◽  
pp. 598-605 ◽  
Author(s):  
Shohichi Osada ◽  
Hiroki Kageyama ◽  
Daisuke Shima ◽  
Hitoki Matsuda

Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119903
Author(s):  
Navid Kardani ◽  
Annan Zhou ◽  
Majidreza Nazem ◽  
Xiaoshan Lin

2021 ◽  
Vol 13 (2) ◽  
pp. 535
Author(s):  
Jing Gao ◽  
Tao Wang ◽  
Jie Zhao ◽  
Xiaoying Hu ◽  
Changqing Dong

Melting solidification experiments of municipal solid waste incineration (MSWI) fly ash were carried out in a high-temperature tube furnace device. An ash fusion temperature (AFT) test, atomic absorption spectroscopy (AAS), scanning electron microscope (SEM), and X-ray diffraction (XRD) were applied in order to gain insight into the ash fusibility, the transformation during the melting process, and the leaching behavior of heavy metals in slag. The results showed that oxide minerals transformed into gehlenite as temperature increased. When the temperature increased to 1300 °C, 89 °C higher than the flow temperature (FT), all of the crystals transformed into molten slag. When the heating temperatures were higher than the FT, the volatilization of the Pb, Cd, Zn, and Cu decreased, which may have been influenced by the formation of liquid slag. In addition, the formation of liquid slag at a high temperature also improved the stability of heavy metals in heated slag.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 84 ◽  
Author(s):  
Qinyang Gu ◽  
Wei Wu ◽  
Baosheng Jin ◽  
Zheng Zhou

Municipal solid waste (MSW) gasification could be a novel method that shows the various advantages over traditional MSW treatments in China. Other research concluded that MSW gasification was operating by the assistant heat, and the gasification may occur under medium temperature. So, this study is aimed to investigate MSW gasification and pyrolysis behavior and analyze the syngas evolution and reaction mechanism. The MSW samples were collected in daily life and the experiments were carried out in a fixed tubular reactor below 650 °C. The effects of medium temperature and oxygen content on syngas quality were elucidated in depth. The results have shown that temperature can promote the syngas quality in the range of 550–650 °C, because the increasing temperature strengthens the reaction rate. The oxygen content should be controlled in a certain range, or oxidation reactions will be more prominent during gasification. The optimal gasification condition in this study was obtained at 650 °C and an oxygen concentration of 1.25%, the combustible gas yield and the lower heating value (LHV) of syngas of this condition were 0.296 L/g and 10.98 kJ/L, respectively. This study provides insights for MSW gasification under medium temperature, and a practical gasification system can be designed under a certain condition.


Sign in / Sign up

Export Citation Format

Share Document