Effects of Mg doping content and annealing temperature on the structural properties of Zn1-x Mg x O thin films prepared by radio-frequency magnetron sputtering

2017 ◽  
Vol 13 (1) ◽  
pp. 42-44 ◽  
Author(s):  
Wen-han Du ◽  
Jing-jing Yang ◽  
Yu Zhao ◽  
Chao Xiong
2006 ◽  
Vol 23 (3) ◽  
pp. 682-685 ◽  
Author(s):  
Jing Shi-Wei ◽  
Liu Yi-Chun ◽  
Liang Yu ◽  
Ma Jian-Gang ◽  
Lu You-Ming ◽  
...  

2016 ◽  
Vol 363 ◽  
pp. 477-482 ◽  
Author(s):  
Yisong He ◽  
Chao Ye ◽  
Xiangying Wang ◽  
Mingwei Gao ◽  
Jiaming Guo ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Tao-Hsing Chen ◽  
Tzu-Yu Liao

This study utilizes radio frequency magnetron sputtering (RF sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate and then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperatures are 300°C , 500°C, and 550°C, respectively. Ti:GZO transparent conductive oxide (TCO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering technique. The thin films are then annealed at temperatures of 300°C, 500°C, and 550°C, respectively, for rapid thermal annealing. The effects of the annealing temperature on the optical properties, resistivity, and nanomechanical properties of the Ti:GZO thin films are then systematically explored. The results show that all of the annealed films have excellent transparency (~90%) in the visible light range. Moreover, the resistivity of the Ti:GZO films reduces with an increasing annealing temperature, while the carrier concentration and Hall mobility both increase. Finally, the hardness and Young’s modulus of the Ti:GZO thin films are both found to increase as the annealing temperature is increased.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


Sign in / Sign up

Export Citation Format

Share Document