Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

2017 ◽  
Vol 16 (3) ◽  
pp. 286-297 ◽  
Author(s):  
R. B. Kaligatla ◽  
Manisha ◽  
T. Sahoo
2021 ◽  
Vol 28 (4) ◽  
pp. 042302
Author(s):  
X. Garbet ◽  
O. Panico ◽  
R. Varennes ◽  
C. Gillot ◽  
G. Dif-Pradalier ◽  
...  
Keyword(s):  

2017 ◽  
Vol 145 (9) ◽  
pp. 3775-3794 ◽  
Author(s):  
Dana Mueller ◽  
Bart Geerts ◽  
Zhien Wang ◽  
Min Deng ◽  
Coltin Grasmick

This study documents the evolution of an impressive, largely undular bore triggered by an MCS-generated density current on 20 June 2015, observed as part of the Plains Elevated Convection at Night (PECAN) experiment. The University of Wyoming King Air with profiling nadir- and zenith-viewing lidars sampled the south-bound bore from the time the first bore wave emerged from the nocturnal convective cold pool and where updrafts over 10 m s−1 and turbulence in the wave’s wake were encountered, through the early dissipative stage in which the leading wave began to lose amplitude and speed. Through most of the bore’s life cycle, its second wave had a higher or equal amplitude relative to the leading wave. Striking roll clouds formed in wave crests and wave energy was detected to about 5 km AGL. The upstream environment indicates a negative Scorer parameter region due to flow reversal at midlevels, providing a wave trapping mechanism. The observed bore strength of 2.4–2.9 and speed of 15–16 m s−1 agree well with values predicted from hydraulic theory. Surface and profiling measurements collected later in the bore’s life cycle, just after sunrise, indicate a transition to a soliton.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (16) ◽  
pp. 3341-3349 ◽  
Author(s):  
Mathias Ohlin ◽  
Ida Iranmanesh ◽  
Athanasia E. Christakou ◽  
Martin Wiklund

We study the effect of 1 MPa-pressure ultrasonic-standing-wave trapping of cells during one hour in a fully temperature- and acoustic streaming-controlled microfluidic chip, and conclude that the viability of lung cancer cells are not affected by this high-pressure, long-term acoustophoresis treatment.


Author(s):  
P. F. Rhodes-Robinson

AbstractIn this paper the scattered progressive waves are determined due to progressive waves incident normally on certain types of partially immersed and completely submerged vertical porous barriers in water of infinite depth. The forms are approximate only, and are obtained using perturbation theory for nearly hard or soft barriers having high and low porosities respectively. The results for arbitrary porosity are difficult to obtain, in contrast to the well known hard limit of impermeable barriers.


2011 ◽  
Author(s):  
Taisuke Washitani ◽  
Masaki Michihata ◽  
Terutake Hayashi ◽  
Yasuhiro Takaya

1993 ◽  
Vol 251 ◽  
pp. 21-53 ◽  
Author(s):  
Sergei I. Badulin ◽  
Victor I. Shrira

The propagation of guided internal waves on non-uniform large-scale flows of arbitrary geometry is studied within the framework of linear inviscid theory in the WKB-approximation. Our study is based on a set of Hamiltonian ray equations, with the Hamiltonian being determined from the Taylor-Goldstein boundary-value problem for a stratified shear flow. Attention is focused on the fundamental fact that the generic smooth non-uniformities of the large-scale flow result in specific singularities of the Hamiltonian. Interpreting wave packets as particles with momenta equal to their wave vectors moving in a certain force field, one can consider these singularities as infinitely deep potential holes acting quite similarly to the ‘black holes’ of astrophysics. It is shown that the particles fall for infinitely long time, each into its own ‘black hole‘. In terms of a particular wave packet this falling implies infinite growth with time of the wavenumber and the amplitude, as well as wave motion focusing at a certain depth. For internal-wave-field dynamics this provides a robust mechanism of a very specific conservative and moreover Hamiltonian irreversibility.This phenomenon was previously studied for the simplest model of the flow non-uniformity, parallel shear flow (Badulin, Shrira & Tsimring 1985), where the term ‘trapping’ for it was introduced and the basic features were established. In the present paper we study the case of arbitrary flow geometry. Our main conclusion is that although the wave dynamics in the general case is incomparably more complicated, the phenomenon persists and retains its most fundamental features. Qualitatively new features appear as well, namely, the possibility of three-dimensional wave focusing and of ‘non-dispersive’ focusing. In terms of the particle analogy, the latter means that a certain group of particles fall into the same hole.These results indicate a robust tendency of the wave field towards an irreversible transformation into small spatial scales, due to the presence of large-scale flows and towards considerable wave energy concentration in narrow spatial zones.


2013 ◽  
Vol 31 (8) ◽  
pp. 1379-1385 ◽  
Author(s):  
A. Voshchepynets ◽  
V. Krasnoselskikh

Abstract. In this work, we studied the effects of background plasma density fluctuations on the relaxation of electron beams. For the study, we assumed that the level of fluctuations was so high that the majority of Langmuir waves generated as a result of beam-plasma instability were trapped inside density depletions. The system can be considered as a good model for describing beam-plasma interactions in the solar wind. Here we show that due to the effect of wave trapping, beam relaxation slows significantly. As a result, the length of relaxation for the electron beam in such an inhomogeneous plasma is much longer than in a homogeneous plasma. Additionally, for sufficiently narrow beams, the process of relaxation is accompanied by transformation of significant part of the beam kinetic energy to energy of accelerated particles. They form the tail of the distribution and can carry up to 50% of the initial beam energy flux.


Sign in / Sign up

Export Citation Format

Share Document