Cerium(IV)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor

2007 ◽  
Vol 24 (6) ◽  
pp. 1009-1016 ◽  
Author(s):  
Subramanian Balaji ◽  
Sang Joon Chung ◽  
Manickam Matheswaran ◽  
Il Shik Moon
2007 ◽  
Vol 55 (1-2) ◽  
pp. 261-266 ◽  
Author(s):  
S.J. Chung ◽  
S. Balaji ◽  
M. Matheswaran ◽  
T. Ramesh ◽  
I.S. Moon

This study investigates the hybrid mediated electrochemical oxidation (HMEO) technology, which is a newly developed non thermal electrochemical oxidation process for organic destruction. A combination of ozone and ultrasonication processes to the mediated electrochemical oxidation (MEO) process is termed as hybrid mediated electrochemical oxidation. The electrochemical cell was developed in this laboratory. In the present study, several organic compounds, such as phenol, benzoquinone and ethylenediaminetetraacetic acid (EDTA), were chosen as the model organic pollutants to be destructed by the hybrid process. The organic destruction was monitored based on the CO2 generation and total organic carbon (TOC) reduction. The HMEO process was found to be extremely effective in the destruction of all the target organics chosen in this study. The information obtained from this study will provide an insight in adopting this technique for dealing with more recalcitrant organics (POPs).


2018 ◽  
Vol 69 (6) ◽  
pp. 1363-1366 ◽  
Author(s):  
Stefania Daniela Bran ◽  
Petre Chipurici ◽  
Mariana Bran ◽  
Alexandru Vlaicu

This paper has aimed at evaluating the concentration of bioethanol obtained using sunflower stem as natural support, molasses as carbon source and Saccharomyces cerevisiae yeast in a continuous flow reactor. The natural support was tested to investigate the immobilization/growth of S. cerevisiae yeast. The concentration of bioethanol produced by fermentation was analyzed by gas chromatography using two methods: aqueous solutions and extraction in organic phase. The CO2 flow obtained during the fermentation process was considered to estimate when the yeast was deactivated. The laboratory experiments have highlighted that the use of plant-based wastes to bioconversion in ethanol could be a non-pollutant and sustainable alternative.


2020 ◽  
Vol 8 (35) ◽  
pp. 13195-13205 ◽  
Author(s):  
Swathi Mukundan ◽  
Daria Boffito ◽  
Abhijit Shrotri ◽  
Luqman Atanda ◽  
Jorge Beltramini ◽  
...  

2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2017 ◽  
Vol 115 (3) ◽  
pp. 606-616 ◽  
Author(s):  
Stephanie A. Parker ◽  
Linus Amarikwa ◽  
Kevin Vehar ◽  
Raquel Orozco ◽  
Scott Godfrey ◽  
...  

2006 ◽  
Vol 691 (24-25) ◽  
pp. 5197-5203 ◽  
Author(s):  
Zenon Lysenko ◽  
Bob R. Maughon ◽  
Tezi Mokhtar-Zadeh ◽  
Michael L. Tulchinsky

Sign in / Sign up

Export Citation Format

Share Document