Artificial Intelligence Predicts Body-Centered-Cubic and Face-Centered-Cubic Phases in High-Entropy Alloys

JOM ◽  
2019 ◽  
Vol 71 (10) ◽  
pp. 3424-3432 ◽  
Author(s):  
Abhishek Agarwal ◽  
A. K. Prasada Rao
2021 ◽  
Vol 11 (6) ◽  
pp. 2832
Author(s):  
Haibo Liu ◽  
Cunlin Xin ◽  
Lei Liu ◽  
Chunqiang Zhuang

The structural stability of high-entropy alloys (HEAs) is closely related to their mechanical properties. The precise control of the component content is a key step toward understanding their structural stability and further determining their mechanical properties. In this study, first-principle calculations were performed to investigate the effects of different contents of each component on the structural stability and mechanical properties of Co-Cr-Fe-Ni HEAs based on the supercell model. Co-Cr-Fe-Ni HEAs were constructed based on a single face-centered cubic (FCC) solid solution. Elemental components have a clear effect on their structure and performance; the Cr and Fe elements have an obvious effect on the structural stability and equilibrium lattice constant, respectively. The Ni elements have an obvious effect on stiffness. The Pugh ratios indicate that Cr and Ni addition may increase ductility, whereas Co and Fe addition may decrease it. With increasing Co and Fe contents or decreasing Cr and Ni contents, the structural stability and stiffness of Co-Cr-Fe-Ni HEAs are improved. The structural stability and mechanical properties may be related to the strength of the metallic bonding and covalent bonding inside Co-Cr-Fe-Ni HEAs, which, in turn, is determined by the change in element content. Our results provide the underlying insights needed to guide the optimization of Co-Cr-Fe-Ni HEAs with excellent mechanical properties.


JOM ◽  
2021 ◽  
Author(s):  
Abhishek Sharma ◽  
Bharat Gwalani ◽  
Sriswaroop Dasari ◽  
Deep Choudhuri ◽  
Yao-Jen Chang ◽  
...  

2021 ◽  
Vol 202 ◽  
pp. 124-134
Author(s):  
Yakai Zhao ◽  
Jeong-Min Park ◽  
Jae-il Jang ◽  
Upadrasta Ramamurty

2020 ◽  
Vol 32 (39) ◽  
pp. 2002652 ◽  
Author(s):  
Li Jiang ◽  
Yong‐Jie Hu ◽  
Kai Sun ◽  
Pengyuan Xiu ◽  
Miao Song ◽  
...  

2020 ◽  
Vol 51 (11) ◽  
pp. 5612-5616
Author(s):  
Motomichi Koyama ◽  
Haoyu Wang ◽  
Virendra Kumar Verma ◽  
Kaneaki Tsuzaki ◽  
Eiji Akiyama

2021 ◽  
pp. 117571
Author(s):  
Daixiu Wei ◽  
Liqiang Wang ◽  
Yongjie Zhang ◽  
Wu Gong ◽  
Tomohito Tsuru ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 908 ◽  
Author(s):  
Wenrui Wang ◽  
Jieqian Wang ◽  
Honggang Yi ◽  
Wu Qi ◽  
Qing Peng

The present work investigates the influence of micro-alloyed Mo on the corrosion behavior of (CoCrFeNi)100−xMox high-entropy alloys. All of the (CoCrFeNi)100−xMox alloys exhibit a single face-centered cubic (FCC) solid solution. However, the (CoCrFeNi)97Mo3 alloy exhibits an ordered sigma (σ) phase enriched in Cr and Mo. With the increase of x (the Mo content) from 1 to 3, the hardness of the (CoCrFeNi)100−xMox alloys increases from 124.8 to 133.6 Vickers hardness (HV), and the compressive yield strength increases from 113.6 MPa to 141.1 MPa, without fracture under about a 60% compressive strain. The potentiodynamic polarization curve in a 3.5% NaCl solution indicates that the addition of Mo has a beneficial effect on the corrosion resistance to some certain extent, opposed to the σ phase. Furthermore, the alloys tend to form a passivation film in the 0.5 M H2SO4 solution in order to inhibit the progress of the corrosion reaction as the Mo content increases.


Sign in / Sign up

Export Citation Format

Share Document