scholarly journals On a cardinal invariant related to the Haar measure problem

2020 ◽  
Vol 236 (1) ◽  
pp. 305-316
Author(s):  
Gianluca Paolini ◽  
Saharon Shelah
2018 ◽  
Vol 147 (3) ◽  
pp. 1051-1057 ◽  
Author(s):  
Adam J. Przeździecki ◽  
Piotr Szewczak ◽  
Boaz Tsaban
Keyword(s):  

2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Author(s):  
ALIREZA ABDOLLAHI ◽  
MEISAM SOLEIMANI MALEKAN

Abstract The following question is proposed by Martino, Tointon, Valiunas and Ventura in [4, question 1·20]: Let G be a compact group, and suppose that \[\mathcal{N}_k(G) = \{(x_1,\dots,x_{k+1}) \in G^{k+1} \;|\; [x_1,\dots, x_{k+1}] = 1\}\] has positive Haar measure in $G^{k+1}$ . Does G have an open k-step nilpotent subgroup? We give a positive answer for $k = 2$ .


2017 ◽  
Vol 26 (03) ◽  
pp. 1730008 ◽  
Author(s):  
Stephen D. H. Hsu

We explain the measure problem (cf. origin of the Born probability rule) in no-collapse quantum mechanics. Everett defined maverick branches of the state vector as those on which the usual Born probability rule fails to hold — these branches exhibit highly improbable behaviors, including possibly the breakdown of decoherence or even the absence of an emergent semi-classical reality. Derivations of the Born rule which originate in decision theory or subjective probability (i.e. the reasoning of individual observers) do not resolve this problem, because they are circular: they assume, a priori, that the observer occupies a non-maverick branch. An ab initio probability measure is sometimes assumed to explain why we do not occupy a maverick branch. This measure is constrained by, e.g. Gleason’s theorem or envariance to be the usual Hilbert measure. However, this ab initio measure ultimately governs the allocation of a self or a consciousness to a particular branch of the wave function, and hence invokes primitives which lie beyond the Everett wave function and beyond what we usually think of as physics. The significance of this leap has been largely overlooked, but requires serious scrutiny.


2011 ◽  
Vol 54 (2) ◽  
pp. 411-422
Author(s):  
Jaroslav Hančl ◽  
Radhakrishnan Nair ◽  
Simona Pulcerova ◽  
Jan Šustek

AbstractContinuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.


Sign in / Sign up

Export Citation Format

Share Document