Influence of exhaust gas recirculation on low-load diesel engine performance

2017 ◽  
Vol 22 (5) ◽  
pp. 443-448 ◽  
Author(s):  
Wenming Cheng ◽  
Xianghu Li ◽  
Xing Yi
2017 ◽  
Vol 110 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Hafizil Mat Yasin ◽  
Rizalman Mamat ◽  
Ahmad Fitri Yusop ◽  
Daing Mohamad Nafiz Daing Idris ◽  
Talal Yusaf ◽  
...  

Author(s):  
Y J Qian ◽  
C J Zuo ◽  
J Tan ◽  
H M Xu

This article presents the potential of improving engine performance and pollutant emissions of a ZS195 Diesel engine by exhaust gas recirculation (EGR) and intake hydrogen enrichment. The effect of EGR level and hydrogen addition on the engine performance and pollutant emissions has been investigated through detailed experiments at rated speed. The experimental results have shown that when EGR level is constant, the peak pressure and maximum rate of pressure rise increase with the increase of hydrogen addition. The intake hydrogen enrichment can reduce HC, CO, and soot level and increase NOX emission, but EGR technique can offset this effect. The combustion speed and thermal efficiency increase with the increase of hydrogen addition when EGR technique has been adopted.


Author(s):  
S. Adinarayana ◽  
YMC Sekhar ◽  
M. Anil Prakash ◽  
BVA Rao

Biodiesels reduce the emissions like HC, CO and particulate matter to minimum possible extent. But the NOx emissions increase because of the reason that the biodiesel is an oxygenated fuel. To contain this particular emission which is responsible for the human health degradation, acid rain, smog creation etc., the Exhaust Gas Recirculation (EGR) technique is resorted to. In this paper, a laboratory based DI diesel engine is run with neat biodiesel (Jatropha Methyl Ester) and cooled EGR which replaces a part of incoming air during suction. Various percentages (viz.0%, 7%, and 14%) of EGR were practiced to investigate the effect on the engine performance and tail pipe emissions. EGR dilutes the charge in the cylinder and thus reduces the peak combustion temperatures. Lower combustion temperatures decrease the formation of NOx with the marginal penalty of increase in other emissions. A comparison was made with the implementation of neat diesel and EGR application to consolidate the performance differences emerge in these cases. 7% EGR is proved to be the best percentage by considering both engine performance and emissions.


Sign in / Sign up

Export Citation Format

Share Document