Titanium carbide/duplex stainless steel (DSS) metal matrix composite coatings prepared by the plasma transferred arc (PTA) technique: microstructure and wear properties

2010 ◽  
Vol 8 (3) ◽  
pp. 427-437 ◽  
Author(s):  
A. Rokanopoulou ◽  
G. D. Papadimitriou
Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6066
Author(s):  
Artur Czupryński ◽  
Marcin Żuk

This article is the last of a series of publications included in the MDPI special edition entitled “Innovative Technologies and Materials for the Production of Mechanical, Thermal and Corrosion Wear-Resistant Surface Layers and Coatings”. Powder plasma-transferred arc welding (PPTAW) was used to surface metal matrix composite (MMC) layers using a mixture of cobalt (Co3) and nickel (Ni3) alloy powders. These powders contained different proportions and types of hard reinforcing phases in the form of ceramic carbides (TiC and WC-W2C), titanium diboride (TiB2), and of tungsten-coated synthetic polycrystalline diamond (PD-W). The resistance of the composite layers to cracking under the influence of dynamic loading was determined using Charpy hammer impact tests. The results showed that the various interactions between the ceramic particles and the metal matrix significantly affected the formation process and porosity of the composite surfacing welds on the AISI 4715 low-alloy structural steel substrate. They also affected the distribution and proportion of reinforcing-phase particles in the matrix. The size, shape, and type of the ceramic reinforcement particles and the surfacing weld density significantly impacted the brittleness of the padded MMC layer. The fracture toughness increased upon decreasing the particle size of the hard reinforcing phase in the nickel alloy matrix and upon increasing the composite density. The calculated mean critical stress intensity factor KIc of the steel samples with deposited layers of cobalt alloy reinforced with TiC and PD-W particles was 4.3 MPa⋅m12 higher than that of the nickel alloy reinforced with TiC and WC-W2C particles.


2021 ◽  
Author(s):  
Saman Sayahlatifi ◽  
Chenwei Shao ◽  
André McDonald ◽  
James David Hogan

Abstract This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).


Sign in / Sign up

Export Citation Format

Share Document