scholarly journals Matrix Composite Coatings Deposited on AISI 4715 Steel by Powder Plasma-Transferred Arc Welding. Part 3. Comparison of the Brittle Fracture Resistance of Wear-Resistant Composite Layers Surfaced Using the PPTAW Method

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6066
Author(s):  
Artur Czupryński ◽  
Marcin Żuk

This article is the last of a series of publications included in the MDPI special edition entitled “Innovative Technologies and Materials for the Production of Mechanical, Thermal and Corrosion Wear-Resistant Surface Layers and Coatings”. Powder plasma-transferred arc welding (PPTAW) was used to surface metal matrix composite (MMC) layers using a mixture of cobalt (Co3) and nickel (Ni3) alloy powders. These powders contained different proportions and types of hard reinforcing phases in the form of ceramic carbides (TiC and WC-W2C), titanium diboride (TiB2), and of tungsten-coated synthetic polycrystalline diamond (PD-W). The resistance of the composite layers to cracking under the influence of dynamic loading was determined using Charpy hammer impact tests. The results showed that the various interactions between the ceramic particles and the metal matrix significantly affected the formation process and porosity of the composite surfacing welds on the AISI 4715 low-alloy structural steel substrate. They also affected the distribution and proportion of reinforcing-phase particles in the matrix. The size, shape, and type of the ceramic reinforcement particles and the surfacing weld density significantly impacted the brittleness of the padded MMC layer. The fracture toughness increased upon decreasing the particle size of the hard reinforcing phase in the nickel alloy matrix and upon increasing the composite density. The calculated mean critical stress intensity factor KIc of the steel samples with deposited layers of cobalt alloy reinforced with TiC and PD-W particles was 4.3 MPa⋅m12 higher than that of the nickel alloy reinforced with TiC and WC-W2C particles.

2019 ◽  
Vol 14 (7) ◽  
pp. 717-720 ◽  
Author(s):  
Qiuyue Jiang ◽  
Ye Tian ◽  
Fengyuan Shu ◽  
Hongyun Zhao ◽  
Yiming Sun ◽  
...  

2011 ◽  
Vol 462-463 ◽  
pp. 593-598 ◽  
Author(s):  
Hong Xia Deng ◽  
Hui Ji Shi ◽  
Seiji Tsuruoka ◽  
Hui Chen Yu ◽  
Bin Zhong

The Plasma transferred arc welding (PTAW) is widely used for hardfacing components exposed to severe conditions. Without post welding heat treatments, large tensile residual stresses remain in the hardfacing coating, which is detrimental. In this paper, a set of post welding heat treatments was evaluated for the heat-resistant steel substrate – Co-based alloy hardfacing coating system. Microstructural and mechanical properties, including the chemical phases of coating surface, the microstructure of coating surface, the Vickers hardness and the residual welding stress, were investigated before and after the heat treatments. Results revealed that during the heat treatments, some elements reprecipitated and the secondary carbide Cr23C6 was formed. After the treatments, a more regular structure and a higher Vickers hardness were obtained. Moreover, the tensile residual stresses in the coating decreased significantly. Therefore, it can be inferred that the post welding heat treatments employed in this paper were proper for this material system.


Sign in / Sign up

Export Citation Format

Share Document