Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7

2017 ◽  
Vol 184 (4) ◽  
pp. 1332-1346 ◽  
Author(s):  
Mathiazhakan Kuttiraja ◽  
Ayed Dhouha ◽  
Rajeshwar Dayal Tyagi
2020 ◽  
Vol 8 (7) ◽  
pp. 1054 ◽  
Author(s):  
Erdem Carsanba ◽  
Seraphim Papanikolaou ◽  
Patrick Fickers ◽  
Huseyin Erten

Oleaginous microorganisms, such as Yarrowia lipolytica, accumulate lipids that can have interesting applications in food biotechnology or the synthesis of biodiesel. Y. lipolytica yeast can have many advantages such as wide substrate range usage and robustness to extreme conditions, while under several culture conditions it can produce high lipid productivity. Based on this assumption, in this study, 12 different Yarrowia lipolytica strains were used to investigate microbial lipid production using a glucose-based medium under nitrogen-limited conditions in shake-flask cultivations. Twelve wild-type or mutant strains of Yarrowia lipolytica which were newly isolated or belonged to official culture collections were tested, and moderate lipid quantities (up to 1.30 g/L) were produced; in many instances, nitrogen limitation led to citric acid production in the medium. Lipids were mainly composed of C16 and C18 fatty acids. Most of the fatty acids of the microbial lipid were unsaturated and corresponded mainly to oleic, palmitic and linoleic acids. Linolenic acid (C18:3) was produced in significant quantities (between 10% and 20%, wt/wt of dry cell weight (DCW)) by strains H917 and Po1dL.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 88
Author(s):  
Paulina Snopek ◽  
Dorota Nowak ◽  
Bartłomiej Zieniuk ◽  
Agata Fabiszewska

Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries.


GCB Bioenergy ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 670-679 ◽  
Author(s):  
Sang Do Yook ◽  
Jiwon Kim ◽  
Gyeongtack Gong ◽  
Ja Kyong Ko ◽  
Youngsoon Um ◽  
...  

Author(s):  
Lin Chen ◽  
Wei Yan ◽  
Xiujuan Qian ◽  
Minjiao Chen ◽  
Xiaoyu Zhang ◽  
...  

2019 ◽  
Vol 290 ◽  
pp. 10-15 ◽  
Author(s):  
Shuyan Zhang ◽  
Sujit Sadashiv Jagtap ◽  
Anshu Deewan ◽  
Christopher V. Rao

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiling Gao ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Wenjun Bao ◽  
Shikun Cheng ◽  
...  

Abstract Background Volatile fatty acids (VFAs) can be effective and promising alternate carbon sources for microbial lipid production by a few oleaginous yeasts. However, the severe inhibitory effect of high-content (> 10 g/L) VFAs on these yeasts has impeded the production of high lipid yields and their large-scale application. Slightly acidic conditions have been commonly adopted because they have been considered favorable to oleaginous yeast cultivation. However, the acidic pH environment further aggravates this inhibition because VFAs appear largely in an undissociated form under this condition. Alkaline conditions likely alleviate the severe inhibition of high-content VFAs by significantly increasing the dissociation degree of VFAs. This hypothesis should be verified through a systematic research. Results The combined effects of high acetic acid concentrations and alkaline conditions on VFA utilization, cell growth, and lipid accumulation of Yarrowia lipolytica were systematically investigated through batch cultures of Y. lipolytica by using high concentrations (30–110 g/L) of acetic acid as a carbon source at an initial pH ranging from 6 to 10. An initial pH of 8 was determined as optimal. The highest biomass and lipid production (37.14 and 10.11 g/L) were obtained with 70 g/L acetic acid, whereas cultures with > 70 g/L acetic acid had decreased biomass and lipid yield due to excessive anion accumulation. Feasibilities on high-content propionic acid, butyric acid, and mixed VFAs were compared and evaluated. Results indicated that YX/S and YL/S of cultures on butyric acid (0.570, 0.144) were comparable with those on acetic acid (0.578, 0.160) under alkaline conditions. The performance on propionic acid was much inferior to that on other acids. Mixed VFAs were more beneficial to fast adaptation and lipid production than single types of VFA. Furthermore, cultures on food waste (FW) and fruit and vegetable waste (FVW) fermentate were carried out and lipid production was effectively improved under this alkaline condition. The highest biomass and lipid production on FW fermentate reached 14.65 g/L (YX/S: 0.414) and 3.20 g/L (YL/S: 0.091) with a lipid content of 21.86%, respectively. By comparison, the highest biomass and lipid production on FVW fermentate were 11.84 g/L (YX/S: 0.534) and 3.08 g/L (YL/S: 0.139), respectively, with a lipid content of 26.02%. Conclusions This study assumed and verified that alkaline conditions (optimal pH 8) could effectively alleviate the lethal effect of high-content VFA on Y. lipolytica and significantly improve biomass and lipid production. These results could provide a new cultivation strategy to achieve simple utilizations of high-content VFAs and increase lipid production. Feasibilities on FW and FVW-derived VFAs were evaluated, and meaningful information was provided for practical applications.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Alexandre Back ◽  
Tristan Rossignol ◽  
François Krier ◽  
Jean-Marc Nicaud ◽  
Pascal Dhulster

Sign in / Sign up

Export Citation Format

Share Document