oxidative stress defense
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 15)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaofan Feng ◽  
Tianyi Jiang ◽  
Chun Yang ◽  
Shujie Pang ◽  
Zhiwen Ding ◽  
...  

AbstractNRF2 is the master transcriptional activator of cytoprotective genes and Kelch-like ECH-associated protein 1 (Keap1), a biosensor for electrophiles and oxidation, promotes NRF2 degradation in unstressed conditions. SQSTM1/p62, an oncogenic protein aberrantly accumulated in hepatocellular carcinoma (HCC), binds and sequestrates Keap1, leading to the prevention of NRF2 degradation. Here, we show that p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A) is highly expressed in HCC tumors and correlated with aggressive clinicopathological features. RPRD1A competitively interacts with TRIM21, an E3 ubiquitin ligase of p62, resulting in the decrease of p62 ubiquitination and the increased sequestration for Keap1. Therefore, RPRD1A enhances the nuclear translocation of NRF2, which induces gene expression for counteracting oxidative stress, maintaining cancer cells survival, and promoting HCC development. Moreover, disturbing the redox homeostasis of cancer cells by genetic knockdown of RPRD1A sensitizes cancer cells to platinum-induced cell death. Our study reveals RPRD1A is involved in the oxidative stress defense program and highlights the therapeutic benefits of targeting pathways that support antioxidation.


Anaerobe ◽  
2021 ◽  
pp. 102466
Author(s):  
Yuichiro Kikuchi ◽  
Kazuko Okamoto-Shibayama ◽  
Eitoyo Kokubu ◽  
Kazuyuki Ishihara

2021 ◽  
Author(s):  
Adrieli Sachett ◽  
Matheus Gallas-Lopes ◽  
Greicy M M Conterato ◽  
Radharani Benvenutti not provided ◽  
Ana P Herrmann ◽  
...  

Zebrafish are incresingly used as a model animal in neuroscience research. Here we describe a protocol to quantify nonprotein sulfhydryl groups (NPSH), an indirect evaluation of the levels of reduced glutathione (GSH), a major oxidative stress defense in the central nervous system.


2021 ◽  
Vol 9 (6) ◽  
pp. 1281
Author(s):  
Myungseo Park ◽  
Sunyoung Hwang ◽  
Sangryeol Ryu ◽  
Byeonghwa Jeon

Oxidative stress resistance is an important mechanism to sustain the viability of oxygen-sensitive microaerophilic Campylobacter jejuni. In C. jejuni, gene expression associated with oxidative stress defense is modulated by PerR (peroxide response regulator) and CosR (Campylobacter oxidative stress regulator). Iron also plays an important role in the regulation of oxidative stress, as high iron concentrations reduce the transcription of perR. However, little is known about how iron affects the transcription of cosR. The level of cosR transcription was increased when the defined media MEMα (Minimum Essential Medium) was supplemented with ferrous (Fe²⁺) and ferric (Fe3⁺) iron and the Mueller–Hinton (MH) media was treated with an iron chelator, indicating that iron upregulates cosR transcription. However, other divalent cationic ions, such as Zn2+, Cu2+, Co2+, and Mn2+, did not affect cosR transcription, suggesting that cosR transcription is regulated specifically by iron. Interestingly, the level of perR transcription was increased when CosR was overexpressed. The positive regulation of perR transcription by CosR was observed both in the presence or in the absence of iron. The results of the electrophoretic mobility shift assay showed that CosR directly binds to the perR promoter. DNase I footprinting assays revealed that the CosR binding site in the perR promoter overlaps with the PerR box. In the study, we demonstrated that cosR transcription is increased in iron-rich conditions, and CosR positively regulates the transcription of PerR, another important regulator of oxidative stress defense in C. jejuni. These results provide new insight into how C. jejuni regulates oxidative stress defense by coordinating the transcription of perR and cosR in response to iron.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao Han ◽  
Zhaohui Li ◽  
Ying Wen ◽  
Zhi Chen

Abstract Background Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. Results To reduce oxygen-mediated cell damage and increase lipid and docosahexaenoic acid (DHA) production in Schizochytrium sp., we strengthened the oxidative stress defense pathways. Overexpression of the enzymes thioredoxin reductase (TRXR), aldehyde dehydrogenase (ALDH), glutathione peroxidase (GPO), and glucose-6-phosphate dehydrogenase (ZWF) strongly promoted cell growth, lipid yield, and DHA production. Coexpression of ZWF, ALDH, GPO, and TRXR enhanced ROS-scavenging ability. Highest values of dry cell weight, lipid yield, and DHA production (50.5 g/L, 33.1 g/L, and 13.3 g/L, respectively) were attained in engineered strain OaldH-gpo-trxR by shake flask fed-batch culture; these were increases of 18.5%, 80.9%, and 114.5% relative to WT values. Conclusions Our findings demonstrate that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium.


2021 ◽  
Vol 60 ◽  
pp. 21-29
Author(s):  
Kaio Cesar Simiano Tavares ◽  
Maria Gabriela Casagrande Dambrós ◽  
André Saraiva Leão Antunes ◽  
Pietro Martin Danziato ◽  
Patricia Hermes Stoco ◽  
...  

Selenoproteins have been described in all three domains of life and their function has been mainly associated with oxidative stress defense. Canonical elements required for selenoprotein production have been identified in members of the kinetoplastid group supporting the existence of a complete selenocysteine synthesis pathway in these organisms. Currently, nothing is known regarding the selenocysteine pathway in Trypanosoma evansi. In this study, we identified the expression of the elements selB, selC, selD, PSTK and selTRYP at the mRNA level in T. evansi. All translated proteins (selD, PSTK, selTRYP and selB) have the domains predicted and higher identity with Trypanosoma brucei. gambiense. The selenophosphate synthetase protein was localized in the cytoplasm. Our results support the existence of an active selenocysteine pathway in T. evansi.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Xinyu Liao ◽  
Weicheng Hu ◽  
Donghong Liu ◽  
Tian Ding

ABSTRACT The occurrence of viable-but-nonculturable (VBNC) bacteria poses a potential risk to food safety due to failure in conventional colony detection. In this study, induction of VBNC Staphylococcus aureus was conducted by exposure to an atmospheric-pressure air dielectric barrier discharge-nonthermal-plasma (DBD-NTP) treatment with an applied energy of 8.1 kJ. The stress resistance profiles and pathogenicity of VBNC S. aureus were further evaluated. We found that VBNC S. aureus showed levels of tolerance of heat, acid, and osmosis challenges comparable to those shown by culturable S. aureus, while VBNC S. aureus exhibited enhanced resistance to oxidative and antibiotic stress, relating to the mechanisms of cellular energy depletion, antioxidant response initiation, and multidrug efflux pump upregulation. Regarding pathogenicity, NTP-induced VBNC S. aureus retained the capacity to infect the HeLa host cells. Compared with the culturable counterparts, VBNC S. aureus caused reduced immune responses (Toll-like receptor [TLR], nucleotide-binding oligomerization domain [NOD]) in HeLa cells, which was attributed to suppression of biosynthesis of the recognized surface ligands (e.g., peptidoglycan). Additionally, the proteomic analysis revealed that upregulation of several virulence factors (ClfB, SdrD, SCIN, SasH, etc.) could ensure that VBNC S. aureus would adhere to and internalize into host cells and avoid the host attack. The camouflaged mechanisms described above led to VBNC S. aureus causing less damage to the host cells, and their activity might result in longer intracellular persistence, posing potential risks during NTP processing. IMPORTANCE The consumer demand for freshness and nutrition has accelerated the development of mild decontamination technologies. The incomplete killing of nonthermal (NT) treatments might induce pathogens to enter into a viable-but-nonculturable (VBNC) status as a survival strategy. The use of nonthermal plasma (NTP) as a novel food decontamination technology received increased attention in food industry during recent decades. Our previous work confirmed that the foodborne pathogen S. aureus was induced into VBNC status in response to NTP exposure. This work further revealed the development of stress resistance and virulence retention of NTP-induced VBNC S. aureus through the mechanisms of energy suppression, oxidative stress defense, and immune escape. The data provide fundamental knowledge of the potential risks posed by NTP-induced VBNC S. aureus, which require further parameter optimization of the NTP process or combination with other techniques to avoid the occurrence of VBNC bacteria.


2020 ◽  
Vol 28 (3) ◽  
pp. 411-421.e6 ◽  
Author(s):  
Reece J. Knippel ◽  
Aaron G. Wexler ◽  
Jeanette M. Miller ◽  
William N. Beavers ◽  
Andy Weiss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document