scholarly journals Towards a Standard Approach to Assess Tibial Bone Loss Following Total Knee Arthroplasty

Author(s):  
Thomas Anijs ◽  
Ilse Kouwert ◽  
Nico Verdonschot ◽  
Dennis Janssen

AbstractLong-term implant failure in the form of aseptic loosening and periprosthetic fracture is the most common cause of revision procedures in total knee arthroplasty (TKA). While early loosening can often be attributed to failure of primary fixation, late implant failure could be associated with loss of fixation secondary to bone resorption, as a result of stress shielding in the proximal tibia. This current review study was performed to identify the clinical effects of different implant-, patient-, and surgery-related biomechanical factors on TKA-related tibial bone loss in clinical reality. Implant-related factors considered were the fixation method, and the implant type, geometry, and stiffness. In terms of patient characteristics, the effects of age, sex, knee alignment, bone density, body weight, and activity level were analyzed. The clinical literature on these topics mostly concerned longitudinal radiographic studies investigating the effect of a single factor on changes in the proximal tibia over time using bone densitometry. Implant stiffness, implant geometry and knee alignment were the only factors consistently found to affect regional bone density changes over time. Each clinical study used its own specific study design, with different definitions used for the baseline density, time points of baseline and follow-up measurements, and regions of interest. Due to the differences in study design, direct comparison between the clinical impact of different biomechanical factors was not possible. Based on the findings over the densitometry studies, a standardized guideline was proposed to allow reliable comparison between consistently reported outcome of future radiographic TKA studies.

Author(s):  
Hideki Mizu-uchi ◽  
Hidehiko Kido ◽  
Tomonao Chikama ◽  
Kenta Kamo ◽  
Satoshi Kido ◽  
...  

AbstractThe optimal placement within 3 degrees in coronal alignment was reportedly achieved in only 60 to 80% of patients when using an extramedullary alignment guide for the tibial side in total knee arthroplasty (TKA). This probably occurs because the extramedullary alignment guide is easily affected by the position of the ankle joint which is difficult to define by tibial torsion. Rotational direction of distal end of the extramedullary guide should be aligned to the anteroposterior (AP) axis of the proximal tibia to acquire optimal coronal alignment in the computer simulation studies; however, its efficacy has not been proven in a clinical setting. The distal end of the guide can be overly displaced from the ideal position when using a conventional guide system despite the alignment of the AP axis to the proximal tibia. This study investigated the effect of displacement of the distal end of extramedullary guide relative to the tibial coronal alignment while adjusting the rotational alignment of the distal end to the AP axis of the proximal tibia in TKA. A total of 50 TKAs performed in 50 varus osteoarthritic knees using an image-free navigation system were included in this study. The rotational alignment of the proximal side of the guide was adjusted to the AP axis of the proximal tibia. The position of the distal end of the guide was aligned to the center of the ankle joint as viewed from the proximal AP axis (ideal position) and as determined by the navigation system. The tibial intraoperative coronal alignments were recorded as the distal end was moved from the ideal position at 3-mm intervals. The intraoperative alignments were 0.5, 0.9, and 1.4 degrees in valgus alignment with 3-, 6-, and 9-mm medial displacements, respectively. The intraoperative alignments were 0.7, 1.2, and 1.7 degrees in varus alignment with 3-, 6-, and 9-mm lateral displacements, respectively. In conclusion, the acceptable tibial coronal alignment (within 2 degrees from the optimal alignment) can be achieved, although some displacement of the distal end from the ideal position can occur after the rotational alignment of the distal end of the guide is adjusted to the AP axis of the proximal tibia.


2017 ◽  
Vol 5 (5_suppl5) ◽  
pp. 2325967117S0016
Author(s):  
Peter McEwen

Objective: Computer assisted total knee arthroplasty (CA TKA) platforms can provide detailed kinematic data that is presented in various forms including a coronal plane graphic that maps the flexion arc from full extension to deep flexion. Graphics obtained from normal tibiofemoral articulations reveal varied and complex kinematic patterns that have yet to be explained. An understanding of what drives curve variation would allow prediction of how a preoperative curve would be altered by total knee arthroplasty. Implant position could then be tailored to maintain a desirable curve or avoid an undesirable one. Methods: An articulated lower limb saw bone with a stable hip pivot was obtained. Adjustable osteotomies were created so that femoral torsion, femoral varus-valgus and tibial varus-valgus could be altered independently. The saw bone limb was registered with a CA TKA navigation system using the posterior condyles as a rotational axis. Axial and coronal plane morphology of the distal femur and coronal plane morphology of the proximal tibia were systematically altered and a kinematic curve obtained for each morphologic combination. Femoral rotational position was varied from 100 of internal torsion to 100 of external torsion in 20 increments. Similarly, femoral coronal position was varied from 20 of varus to 60 of valgus and tibial coronal position was varied from 5.50 of varus to 10 of valgus. Curves were obtained by manually flexing the joint through a full range of motion with the femoral condyles in contact with proximal tibia at all times. Results: Varying femoral rotation has no effect in full extension but drives the curve away from neutral as the knee flexes. Maximal deviation is seen at around 900 of flexion. Internal torsion drives the curve into valgus as the knee flexes and external torsion has a reciprocal effect. Varying femoral varus-valgus causes maximal deviation from neutral in full extension. Femoral varus drives the curve from varus in extension towards valgus as the knee flexes with the effect peaking in maximal flexion. Femoral valgus has a reciprocal effect. Varying tibial varus-valgus has no effect on curve shape but does move the curve either side of neutral. Complex (parabolic) curves are caused by large rotations or the opposing effects of femoral varus-valgus and femoral rotation. The modal human anatomy of slight femoral internal rotation, slight femoral valgus and slight tibial varus produces a straight neutral curve. Conclusion: Kinematic curve shape is driven by distal femoral anatomy. The typical changes made to distal femoral articular anatomy in TKA by externally rotating a neutrally orientated femoral component will bring many native curves towards neutral. Externally rotating when the preoperative curve begins neutral and drives into varus as the knee flexes will drive the curve harder into varus. Conversely, kinematic femoral placement will reconstitute the premorbid curve morphology. Which outcome is preferable has yet to be determined.


1998 ◽  
Vol 29 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Peter L. Lewis ◽  
Nigel T. Brewster ◽  
Stephen E. Graves

2018 ◽  
Vol 46 (5) ◽  
pp. 1919-1927 ◽  
Author(s):  
Hirotaka Mutsuzaki ◽  
Arata Watanabe ◽  
Tomonori Kinugasa ◽  
Kotaro Ikeda

Objective To analyse location and frequency, and change over time, of radiolucent lines (RLLs) around trabecular metal tibial components in total knee arthroplasty (TKA). Methods Osteoarthritic knees in patients who had undergone TKA were retrospectively evaluated via analysis of RLLs on anteroposterior and lateral X-rays obtained at 2 and 6 months, and 1, 2 and 3 years following TKA. Results In 125 osteoarthritic knees from 90 patients (mean age, 75.0 ± 6.2; 21 male/69 female), frequency of RLLs around trabecular metal tibial components was generally highest at 2 and 6 months, and 1 year following TKA, then gradually decreased over the 3-year follow-up. Frequency of RLLs around trabecular metal tibial components was greater at the tip of the two pegs, particularly the medial peg, and around the pegs, versus other zones. No postoperative revisions were performed for loosening. Conclusions Over 3 years following TKA, RLLs were most frequently observed up to 1 year, then gradually decreased. RLLs were significantly more frequent in the medial peg zone and zones close to the medial peg than in other zones.


Sign in / Sign up

Export Citation Format

Share Document