Spectrum of mitochondrial genomic variation in parathyroid neoplasms

Endocrine ◽  
2021 ◽  
Author(s):  
Ya Hu ◽  
Xiang Zhang ◽  
Ou Wang ◽  
Xiaoping Xing ◽  
Ming Cui ◽  
...  
2019 ◽  
Vol 30 ◽  
pp. ix98-ix99
Author(s):  
Y. Hu ◽  
X. Zhang ◽  
O. Wang ◽  
X. Xing ◽  
M. Cui ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
SUNITA BORDE ◽  
ASAWARI FARTADE ◽  
AMOL THOSAR ◽  
RAHUL KHAWAL

Ptychobothridean genera like Senga and Circumoncobothrium are the common parasites of fresh water fishes. The genotypic study of these parasites was taken by RAPD. The RAPD profile of these two parasites were not similar to each other as depicted by the band pattern in picture. These results suggest the presence of inter-specific polymorphism among cestode parasites of two different genera for RAPD analysis. The present study demonstrated that genetic differentiation of cestode parasites could be accomplished on the basis of genomic variation with polymorphic band pattern using RAPD. All the detected bands (PCR product) were polymorphic and band size ranged from 500-5000 bp in length. The RAPD of profiles using GBO-31, GBO-32, GBO-33, GBO-34, GBO-35 and GBO-36. Primers were able to characterize inter-specific polymorphism among the two genus ( Senga and Circumoncobothrium ). Genetic analysis suggests that Senga and Circumoncobothrium show genetic diversity with respect to RAPD patterns using all the six primers used for the present study. The genetic distance between the analyzed genuses ranged from 0.14 to 0.80. The differentiation of the two parasites on the basis of genetic markers could greatly facilitate study on the biology of these parasites.


2018 ◽  
Author(s):  
Jolie WAX ◽  
Zhu Zhuo ◽  
Anna Bower ◽  
Jessica Cooper ◽  
Susan Gachara ◽  
...  

2013 ◽  
Vol 38 (6) ◽  
pp. 996-1002
Author(s):  
Suo-Ping LI ◽  
Da-Le ZHANG ◽  
Xiu-E WANG ◽  
Zeng-Jun QI ◽  
Da-Jun LIU ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Agata Stodolna ◽  
Miao He ◽  
Mahesh Vasipalli ◽  
Zoya Kingsbury ◽  
Jennifer Becq ◽  
...  

Abstract Background Clinical-grade whole-genome sequencing (cWGS) has the potential to become the standard of care within the clinic because of its breadth of coverage and lack of bias towards certain regions of the genome. Colorectal cancer presents a difficult treatment paradigm, with over 40% of patients presenting at diagnosis with metastatic disease. We hypothesised that cWGS coupled with 3′ transcriptome analysis would give new insights into colorectal cancer. Methods Patients underwent PCR-free whole-genome sequencing and alignment and variant calling using a standardised pipeline to output SNVs, indels, SVs and CNAs. Additional insights into the mutational signatures and tumour biology were gained by the use of 3′ RNA-seq. Results Fifty-four patients were studied in total. Driver analysis identified the Wnt pathway gene APC as the only consistently mutated driver in colorectal cancer. Alterations in the PI3K/mTOR pathways were seen as previously observed in CRC. Multiple private CNAs, SVs and gene fusions were unique to individual tumours. Approximately 30% of patients had a tumour mutational burden of > 10 mutations/Mb of DNA, suggesting suitability for immunotherapy. Conclusions Clinical whole-genome sequencing offers a potential avenue for the identification of private genomic variation that may confer sensitivity to targeted agents and offer patients new options for targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document