The Role of Inflammatory and Oxidative Stress Mechanisms in the Pathogenesis of Parkinson’s Disease: Focus on Astrocytes

2013 ◽  
Vol 49 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Rituraj Niranjan
Author(s):  
Linlin Zhang ◽  
Aurelio Reyes ◽  
Xiangdong Wang

Abstract: The discovery of charged molecules being able to cross the mitochondrial membrane has prompted many scholars to exploit this idea to find a way of preventing or slowing down aging. In this paper, we will focus on mitochondriatargeted antioxidants, which are cationic derivatives of plastoquinone, and in particular on the mitochondria-targeted antioxidant therapy of neurodegenerative diseases. It is well known that the accumulation of amyloid-β peptide (Aβ) in mitochondria and its related mitochondrial dysfunction are critical signatures of Alzheimer’ s disease (AD). In another neurodegenerative disease, Parkinson’s disease (PD), the loss of dopaminergic neurons in the substantia nigra and the production of Lewy bodies are among their pathological features. Pathogenesis of Parkinson’s disease and Alzheimer’s disease has been frequently linked to mitochondrial dysfunction and oxidative stress. Recent studies show that MitoQ, a mitochondria-targeted antioxidant, may possess therapeutic potential for Aβ-related and oxidative stress-associated neurodegenerative diseases, especially AD. Although MitoQ has been developed to the stage of clinical trials in PD, its true clinical effect still need further verification. This review aims to discuss the role of mitochondrial pathology in neurodegenerative diseases, as well as the recent development of mitochondrial targeted antioxidants as a potential treatment for these diseases by removing excess oxygen free radicals and inhibiting lipid peroxidation in order to improve mitochondrial function.  


2014 ◽  
pp. 521-548
Author(s):  
Renato Santos ◽  
Sónia Correia ◽  
Susana Cardoso ◽  
Cristina Carvalho ◽  
Emanuel Candeias ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 314 ◽  
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Rémy Guillevin ◽  
Jean-Noël Vallée

Parkinson’s disease (PD) is one of the main neurodegenerative disease characterized by a progressive degeneration of neurons constituted by dopamine in the substantia nigra pars compacta. The etiologies of PD remain unclear. Aging is the main risk factor for PD. Aging could dysregulate molecular pathways controlling cell homeostatic mechanisms. PD cells are the sites of several metabolic abnormalities including neuroinflammation and oxidative stress. Metabolic structures are driven by circadian rhythms. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways. Recent findings have shown that the dysregulation of the circadian rhythms is correlated with PD and its metabolic dysregulations. This review is focused on the key role of circadian rhythms and their impact on neuroinflammation and oxidative stress in Parkinson’s disease.


2019 ◽  
Vol 73 ◽  
pp. 516-528
Author(s):  
Dominika Markowska ◽  
Daria Malicka ◽  
Jarosław Nuszkiewicz ◽  
Karolina Szewczyk-Golec

The widespread aging of societies results in the intensification of the development of neurodegenerative diseases associated with advanced age, including Parkinson’s disease. Unfortunately, modern medicine is not able to unequivocally determine the etiopathogenesis of the disease, which is why no causative treatment can be given. According to the current state of knowledge, in the course of Parkinson’s disease the substantia nigra pars compacta in the midbrain degenerates, leading to a decrease in dopamine levels in the patient’s brain. This results in neurotransmission disturbances and the development of undesirable effects. Neurodegenerative changes are supposedly caused by the combination of various factors, including genetic factors, chronic inflammation, the interaction of toxins, disturbances in protein metabolism, and oxidative stress. The therapeutic possibilities associated with the administration of antioxidants, which could alleviate increased oxidative stress and contribute to the better quality of life of the patient, are considered. Taking into account the studies on numerous antioxidants, such as coenzyme Q10, B vitamins, vitamin D, vitamin E and resveratrol, it cannot be unequivocally stated that this is an effective treatment, because experiments carried out on both humans and animals gave conflicting results. It is reasonable to say that antioxidant deficiencies should be avoided and the physiological levels should be sought, as this may be translated into significant health benefits.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Linlin Zhang ◽  
Aurelio Reyes ◽  
Xiangdong Wang

The discovery of charged molecules being able to cross the mitochondrial membrane has prompted many scholars to exploit this idea to find a way of preventing or slowing down aging. In this paper, we will focus on mitochondria-targeted antioxidants, which are cationic derivatives of plastoquinone, and in particular on the mitochondria-targeted antioxidant therapy of neurodegenerative diseases. It is well known that the accumulation of amyloid-β peptide (Aβ) in mitochondria and its related mitochondrial dysfunction are critical signatures of Alzheimer’s disease (AD). In another neurodegenerative disease, Parkinson’s disease (PD), the loss of dopaminergic neurons in the substantia nigra and the production of Lewy bodies are among their pathological features. Pathogenesis of Parkinson’s disease and Alzheimer’s disease has been frequently linked to mitochondrial dysfunction and oxidative stress. Recent studies show that MitoQ, a mitochondria-targeted antioxidant, may possess therapeutic potential for Aβ-related and oxidative stress-associated neurodegenerative diseases, especially AD. Although MitoQ has been developed to the stage of clinical trials in PD, its true clinical effect still need further verification. This review aims to discuss the role of mitochondrial pathology in neurodegenerative diseases, as well as the recent development of mitochondrial targeted antioxidants as a potential treatment for these diseases by removing excess oxygen free radicals and inhibiting lipid peroxidation in order to improve mitochondrial function.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Prashant Tarale ◽  
Tapan Chakrabarti ◽  
Saravanadevi Sivanesan ◽  
Pravin Naoghare ◽  
Amit Bafana ◽  
...  

Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson’s disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson’s disease is characterized by theα-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression ofα-synuclein.α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis.α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson’s disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document