Erratum to: the Role of Autophagy in the Correlation Between Neuron Damage and Cognitive Impairment in Rat Chronic Cerebral Hypoperfusion

2017 ◽  
Vol 55 (1) ◽  
pp. 792-792
Author(s):  
Wenying Zou ◽  
Yufei Song ◽  
Yumei Li ◽  
Yu Du ◽  
Xiaojie Zhang ◽  
...  
2017 ◽  
Vol 55 (1) ◽  
pp. 776-791 ◽  
Author(s):  
Wenying Zou ◽  
Yufei Song ◽  
Yumei Li ◽  
Yu Du ◽  
Xiaojie Zhang ◽  
...  

2013 ◽  
Vol 34 (3) ◽  
pp. 621-635 ◽  
Author(s):  
Je-Seong Won ◽  
Jinsu Kim ◽  
Balasubramaniam Annamalai ◽  
Anandakumar Shunmugavel ◽  
Inderjit Singh ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2176 ◽  
Author(s):  
Amelia Nur Vidyanti ◽  
Jia-Yu Hsieh ◽  
Kun-Ju Lin ◽  
Yao-Ching Fang ◽  
Ismail Setyopranoto ◽  
...  

The pathophysiology of vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH). Increased high-mobility group box protein 1 (HMGB1), a nonhistone protein involved in injury and inflammation, has been established in the acute phase of CCH. However, the role of HMGB1 in the chronic phase of CCH remains unclear. We developed a novel animal model of CCH with a modified bilateral common carotid artery occlusion (BCCAO) in C57BL/6 mice. Cerebral blood flow (CBF) reduction, the expression of HMGB1 and its proinflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β, and IL-6), and brain pathology were assessed. Furthermore, we evaluated the effect of HMGB1 suppression through bilateral intrahippocampus injection with the CRISPR/Cas9 knockout plasmid. Three months after CCH induction, CBF decreased to 30–50% with significant cognitive decline in BCCAO mice. The 7T-aMRI showed hippocampal atrophy, but amyloid positron imaging tomography showed nonsignificant amyloid-beta accumulation. Increased levels of HMGB1, TNF-α, IL-1β, and IL-6 were observed 3 months after BCCAO. HMGB1 suppression with CRISPR/Cas9 knockout plasmid restored TNF-α, IL-1β, and IL-6 and attenuated hippocampal atrophy and cognitive decline. We believe that HMGB1 plays a pivotal role in CCH-induced VCI pathophysiology and can be a potential therapeutic target of VCI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxian Li ◽  
Di Wei ◽  
Zheng Zhu ◽  
Xiaomei Xie ◽  
Shuqin Zhan ◽  
...  

Chronic cerebral hypoperfusion (CCH) contributes to cognitive impairments, and hippocampal neuronal death is one of the key factors involved in this process. Dl-3-n-butylphthalide (D3NB) is a synthetic compound originally isolated from the seeds of Apium graveolens, which exhibits neuroprotective effects against some neurological diseases. However, the protective mechanisms of D3NB in a CCH model mimicking vascular cognitive impairment remains to be explored. We induced CCH in rats by a bilateral common carotid artery occlusion (BCCAO) operation. Animals were randomly divided into a sham-operated group, CCH 4-week group, CCH 8-week group, and the corresponding D3NB-treatment groups. Cultured primary hippocampal neurons were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic CCH in vitro. We aimed to explore the effects of D3NB treatment on hippocampal neuronal death after CCH as well as its underlying molecular mechanism. We observed memory impairment and increased hippocampal neuronal apoptosis in the CCH groups, combined with inhibition of CNTF/CNTFRα/JAK2/STAT3 signaling, as compared with that of sham control rats. D3NB significantly attenuated cognitive impairment in CCH rats and decreased hippocampal neuronal apoptosis after BCCAO in vivo or OGD/R in vitro. More importantly, D3NB reversed the inhibition of CNTF/CNTFRα expression and activated the JAK2/STAT3 pathway. Additionally, JAK2/STAT3 pathway inhibitor AG490 counteracted the protective effects of D3NB in vitro. Our results suggest that D3NB could improve cognitive function after CCH and that this neuroprotective effect may be associated with reduced hippocampal neuronal apoptosis via modulation of CNTF/CNTFRα/JAK2/STAT3 signaling pathways. D3NB may be a promising therapeutic strategy for vascular cognitive impairment induced by CCH.


2014 ◽  
Vol 42 (s4) ◽  
pp. S525-S535 ◽  
Author(s):  
Allison Auchter ◽  
Justin Williams ◽  
Bryan Barksdale ◽  
Marie H. Monfils ◽  
Francisco Gonzalez-Lima

2019 ◽  
Author(s):  
Amelia Nur Vidyanti ◽  
Jia-Yu Hsieh ◽  
Kun-Ju Lin ◽  
Yao-Ching Fang ◽  
Ismail Setyopranoto ◽  
...  

Abstract Background: The molecular mechanisms of vascular cognitive impairment (VCI) are diverse and still in puzzle. VCI could be attributed to chronic cerebral hypoperfusion (CCH). CCH may cause a cascade of reactions involved in ischemia and neuro-inflammation which plays important roles in the pathophysiology of VCI. High-mobility group box protein 1 (HMGB1) is a non-histone protein that serves as a damage-associated molecular signal leading to cascades of inflammation. Increased level of HMGB1 has been established in the acute phase of CCH. However, the role of HMGB1 at the chronic phase of CCH remains elucidated. Methods: We performed modified bilateral common carotid artery occlusion (BCCAO) in C57BL/6 mice to induce CCH. We examined the cerebral blood flow (CBF) reduction by laser doppler flowmetry, the protein expression of HMGB1 and its pro-inflammatory cytokines (TNF-a, IL-1b, and IL-6) by western blotting and immunohistochemistry. The brain pathology was assessed by 7T-animal MRI and amyloid-b accumulation was assessed by amyloid-PET scanning. We further evaluated the effect of HMGB1 suppression by injecting CRISPR/Cas9 knock-out plasmid intra-hippocampus bilaterally. Results: There were reduction of CBF up to 50% which persisted three months after CCH. The modified-BCCAO animals developed significant cognitive decline. The 7T-MRI image showed hippocampal atrophy, although the amyloid-PET showed no significant amyloid-beta accumulation. Increased protein levels of HMGB1, TNF-a and IL-1b were found three months after BCCAO. HMGB1 suppression by CRISPR/Cas9 knock-out plasmid restored the CBF, IL-1B, TNF-alpha, IL-6, and attenuated hippocampal atrophy and cognitive decline. Conclusion: HMGB1 plays a pivotal role in the pathophysiology of the animal model of CCH and it might be a candidate as therapeutic targets of VCI.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zhao-Hui Yao ◽  
Xiao-li Yao ◽  
Shao-feng Zhang ◽  
Ji-chang Hu ◽  
Yong Zhang

Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques, electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However, for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.


Sign in / Sign up

Export Citation Format

Share Document