The Role of Methylated Circulating Nucleic Acids as a Potential Biomarker in Alzheimer’s Disease

2018 ◽  
Vol 56 (4) ◽  
pp. 2440-2449 ◽  
Author(s):  
Ming-Chyi Pai ◽  
Yu-Min Kuo ◽  
I-Fang Wang ◽  
Po-Min Chiang ◽  
Kuen-Jer Tsai
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Siddhartha Mondragón-Rodríguez ◽  
Humberto Salgado-Burgos ◽  
Fernando Peña-Ortega

For more than five decades, the field of Alzheimer’s disease (AD) has focused on two main hypotheses positing amyloid-beta (Aβ) and Tau phosphorylation (pTau) as key pathogenic mediators. In line with these canonical hypotheses, several groups around the world have shown that the synaptotoxicity in AD depends mainly on the increase in pTau levels. Confronting this leading hypothesis, a few years ago, we reported that the increase in phosphorylation levels of dendritic Tau, at its microtubule domain (MD), acts as a neuroprotective mechanism that prevents N-methyl-D-aspartate receptor (NMDAr) overexcitation, which allowed us to propose that Tau protein phosphorylated near MD sites is involved in neuroprotection, rather than in neurodegeneration. Further supporting this alternative role of pTau, we have recently shown that early increases in pTau close to MD sites prevent hippocampal circuit overexcitation in a transgenic AD mouse model. Here, we will synthesize this new evidence that confronts the leading Tau-based AD hypothesis and discuss the role of pTau modulating neural circuits and network connectivity. Additionally, we will briefly address the role of brain circuit alterations as a potential biomarker for detecting the prodromal AD stage.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Gagandeep Kaur ◽  
Suraj Singh S. Rathod ◽  
Mohammed M. Ghoneim ◽  
Sultan Alshehri ◽  
Javed Ahmad ◽  
...  

DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer’s disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer’s disease, Parkinson’s disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
K Lerche ◽  
M Willem ◽  
K Kleinknecht ◽  
C Romberg ◽  
U Konietzko ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


Sign in / Sign up

Export Citation Format

Share Document