A unique DNA repair and recombination gene (recN) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences

2013 ◽  
Vol 38 (2) ◽  
pp. 267-278 ◽  
Author(s):  
Aundy Kumar ◽  
Thekkan Puthiyaveedu Prameela ◽  
Rajamma Suseelabhai
Mycologia ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 727 ◽  
Author(s):  
Kwan S. Ko ◽  
Soon G. Hong ◽  
Hack S. Jung

2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2000 ◽  
Vol 86 (3) ◽  
pp. 588 ◽  
Author(s):  
Steven A. Nadler ◽  
Eric P. Hoberg ◽  
Deborah S. S. Hudspeth ◽  
Lora G. Rickard

1985 ◽  
Vol 5 (2) ◽  
pp. 398-405 ◽  
Author(s):  
J S Rubin ◽  
V R Prideaux ◽  
H F Willard ◽  
A M Dulhanty ◽  
G F Whitmore ◽  
...  

The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.


Nematology ◽  
2003 ◽  
Vol 5 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Peter Mullin ◽  
Timothy Harris ◽  
Thomas Powers

AbstractThe systematic position of Campydora Cobb, 1920, which possesses many unique morphological features, especially in pharyngeal structure and stomatal armature, has long been a matter of uncertainty with the 'position of the Campydorinae' (containing only Campydora) being questionable. A review of the morphology of C. demonstrans, the only nominal species of Campydora concluded that the species warranted placement as the sole member of a monotypic suborder, Campydorina, in the order Dorylaimida. Others placed Campydorina in the order Enoplida. We conducted phylogenetic analyses, using 18s small subunit ribosomal DNA sequences generated from a number of taxa in the subclasses Enoplia and Dorylaimia, to evaluate these competing hypotheses. Although precise taxonomic placement of the genus Campydora and the identity of its closest living relatives is in need of further investigation, our analyses, under maximum parsimony, distance, and maximum likelihood criteria, unambiguously indicate that Campydora shares a common, more recent, ancestry with genera such as Alaimus, Pontonema, Tripyla and Ironus (Enoplida), rather than with any members of Dorylaimida, Mononchida or Triplonchida.


Sign in / Sign up

Export Citation Format

Share Document