Relationship between the morphology for the photo-electrode of copper bismuth oxide and the photo-electrochemical activity related to water reduction

2021 ◽  
Vol 133 (1) ◽  
Author(s):  
Yukihiro Nakabayashi ◽  
Masami Nishikawa ◽  
Nobuo Saito
2020 ◽  
Vol 53 (49) ◽  
pp. 495501 ◽  
Author(s):  
Ke Feng ◽  
Eser Metin Akinoglu ◽  
Farabi Bozheyev ◽  
Lijing Guo ◽  
Mingliang Jin ◽  
...  

2015 ◽  
Vol 53 (6) ◽  
pp. 438-444 ◽  
Author(s):  
Hyukhyun Ryu ◽  
Hu Joong Lee ◽  
Tae Gyoum Kim ◽  
Hee-bong Oh ◽  
Won-Jae Lee

2011 ◽  
Vol 4 (6) ◽  
pp. 53-56 ◽  
Author(s):  
Vennila Raj ◽  
◽  
P. Kamaraj P. Kamaraj ◽  
M. Arthanareeswari M. Arthanareeswari ◽  
J. Deepika J. Deepika

2020 ◽  
Vol 25 (2) ◽  
pp. 66-71
Author(s):  
A.B. Drovosekov

Corrosion resistance properties, such as porosity, stability in the atmosphere of NaCl mist, and anodic electrochemical activity in a sulfuric acid solution are studied and compared for Ni-W-P and Ni-P coatings obtained by electroless deposition. The studied coatings were obtained from solutions with glycine as the main ligand and contained 10.2 to 15.6 at.% of phosphorus and up to 3.3 at.% of tungsten. It is shown that Ni-W-P coatings with a tungsten content of 2.3 to 3.3 at.% and a thickness of 15 μm have a significantly lower porosity as compared with nickel-phosphorus coatings of the same thickness. Also, significantly better stability of Ni-W-P coatings in a NaCl mist atmosphere was observed, their corrosion damage degree is less than that of Ni-P coatings, and relatively little depends on the duration of exposure in a corrosive environment. Analysis of anodic polarization curves showed an almost similar electrochemical activity upon dissolution of Ni-P and Ni-W-P coatings in sulfuric acid. Both these types of electroless coatings showed a markedly better tendency to anodic dissolution than pure nickel. Taking into account the obtained experimental data, a conclusion is made as to the better protective characteristics of Ni-W-P coatings in comparison with nickel-phosphorus coatings. The main reason of the inferior protective properties of Ni-P coatings is their relatively high porosity.


1999 ◽  
Vol 64 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Gabriel Čík ◽  
František Šeršeň ◽  
Alena Bumbálová

The formation of reactive oxygen species due to irradiation by a visible light of the polythiophene deposited in ZSM-5 zeolite channels in aqueous medium has been studied. Polymerization of thiophene was carried out in zeolite channels after the ion-exchange reaction of Na+ for Fe3+. By means of EPR spectroscopy, the temporarily generated 1O2 in irradiated aqueous medium was proved. The formation of O2-• was confirmed by the reduction of Fe3+-cytochrome c. Irradiation led to the water reduction to hydrogen.


AIChE Journal ◽  
2014 ◽  
Vol 60 (4) ◽  
pp. 1381-1392 ◽  
Author(s):  
John P. E. Muller ◽  
Burcu S. Aytar ◽  
Yukishige Kondo ◽  
David M. Lynn ◽  
Nicholas L. Abbott

2021 ◽  
Author(s):  
Luke D Geoffrion ◽  
David Medina Cruz ◽  
Matthew Kusper ◽  
Sakr Elsaidi ◽  
Fumiya Watanabe ◽  
...  

Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased...


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2212
Author(s):  
Worawat Poltabtim ◽  
Ekachai Wimolmala ◽  
Teerasak Markpin ◽  
Narongrit Sombatsompop ◽  
Vichai Rosarpitak ◽  
...  

The potential utilization of wood/polyvinyl chloride (WPVC) composites containing an X-ray protective filler, namely bismuth oxide (Bi2O3) particles, was investigated as novel, safe, and environmentally friendly X-ray shielding materials. The wood and Bi2O3 contents used in this work varied from 20 to 40 parts per hundred parts of PVC by weight (pph) and from 0 to 25, 50, 75, and 100 pph, respectively. The study considered X-ray shielding, mechanical, density, water absorption, and morphological properties. The results showed that the overall X-ray shielding parameters, namely the linear attenuation coefficient (µ), mass attenuation coefficient (µm), and lead equivalent thickness (Pbeq), of the WPVC composites increased with increasing Bi2O3 contents but slightly decreased at higher wood contents (40 pph). Furthermore, comparative Pbeq values between the wood/PVC composites and similar commercial X-ray shielding boards indicated that the recommended Bi2O3 contents for the 20 pph (40 ph) wood/PVC composites were 35, 85, and 40 pph (40, 100, and 45 pph) for the attenuation of 60, 100, and 150-kV X-rays, respectively. In addition, the increased Bi2O3 contents in the WPVC composites enhanced the Izod impact strength, hardness (Shore D), and density, but reduced water absorption. On the other hand, the increased wood contents increased the impact strength, hardness (Shore D), and water absorption but lowered the density of the composites. The overall results suggested that the developed WPVC composites had great potential to be used as effective X-ray shielding materials with Bi2O3 acting as a suitable X-ray protective filler.


Sign in / Sign up

Export Citation Format

Share Document