scholarly journals Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model

2012 ◽  
Vol 121 (3) ◽  
pp. 637-657 ◽  
Author(s):  
SHYAMAL GHOSH ◽  
SUBASHISA DUTTA
2015 ◽  
Vol 17 (3) ◽  
pp. 594-606 ◽  

<div> <p>The impact of climate change on water resources through increased evaporation combined with regional changes in precipitation characteristics has the potential to affect mean runoff, frequency and intensity of floods and droughts, soil moisture and water supply for irrigation and hydroelectric power generation. The Ganga-Brahmaputra-Meghna (GBM) system is the largest in India with a catchment area of about 110Mha, which is more than 43% of the cumulative catchment area of all the major rivers in the country. The river Damodar is an important sub catchment of GBM basin and its three tributaries- the Bokaro, the Konar and the Barakar form one important tributary of the Bhagirathi-Hughli (a tributary of Ganga) in its lower reaches. The present study is an attempt to assess the impacts of climate change on water resources of the four important Eastern River Basins namely Damodar, Subarnarekha, Mahanadi and Ajoy, which have immense importance in industrial and agricultural scenarios in eastern India. A distributed hydrological model (HEC-HMS) has been used on the four river basins using HadRM2 daily weather data for the period from 2041 to 2060 to predict the impact of climate change on water resources of these river systems.&nbsp;</p> </div> <p>&nbsp;</p>


2015 ◽  
Vol 527 ◽  
pp. 281-291 ◽  
Author(s):  
Tushar Apurv ◽  
Rajeshwar Mehrotra ◽  
Ashish Sharma ◽  
Manish Kumar Goyal ◽  
Subashisa Dutta

2021 ◽  
Author(s):  
Bruno Majone ◽  
Diego Avesani ◽  
Patrick Zulian ◽  
Aldo Fiori ◽  
Alberto Bellin

Abstract. Climate change impact studies on hydrological extremes often rely on the use of hydrological models with parameters inferred by using observational data of daily streamflow. In this work we show that this is an error prone procedure when the interest is to develop reliable Empirical Cumulative Distribution Function curves of annual streamflow maximum. As an alternative approach we introduce a methodology, coined Hydrological Calibration of eXtremes (HyCoX), in which the calibration of the hydrological model is carried out by directly targeting the probability distribution of high flow extremes. In particular, hydrological simulations conducted during a reference period, as driven by climate models’ outputs, are constrained to maximize the probability that the modeled and observed high flow extremes belong to the same population. The application to the Adige river catchment (southeastern Alps, Italy) by means of HYPERstreamHS, a distributed hydrological model, showed that this procedure preserves statistical coherence and produce reliable quantiles of the annual maximum streamflow to be used in assessment studies.


2012 ◽  
Vol 7 (5) ◽  
pp. 573-581 ◽  
Author(s):  
Subashisa Dutta ◽  
◽  
Shyamal Ghosh

Being the highest specific discharge river in the world, the Brahmaputra has a large floodplain area of 700 km in length in its middle reaches falling in the high flood vulnerability category. Floods generated in upland Himalayan catchments are mainly controlled by land use and land cover, storm characteristics, and vegetation dynamics. Floods propagate through a floodplain region consisting of wetlands, paddy agriculture, and wide braided river reaches with natural constraint points (nodals) that make the reaches more vulnerable to flood hazards. In this study, a macroscale distributed hydrological model was used to obtain the flood characteristics of the reaches. A hydrological model with spatially distributed input parameters and meteorological data was simulated at (1 km × 1 km) spatial grids to estimate flood hydrographs at the main river and itsmajor tributaries. Aftermodel validation, “best guess” land use change scenarios were used to estimate potential changes in flood characteristics. Results show that at the middle reaches of the Brahmaputra, peak discharge increases by a maximum of 9% for land use change scenarios. The same model with bias-corrected climatological data from a regional climate model (RCM) simulation (PRECIS) was used to obtain future changes in flood generation and its propagation through the basin in the projected climatological scenario. Changes in flood characteristics with reference to the baseline period show that the average duration of flood waves will increase from 15.2 days in the baseline period (1961-1990) to 19.3 days in the future (2071-2100). Peak discharge will increase by an average of 21% in the future in the projected climate change scenario. After statistics on changes of flood characteristics in the projected climate change scenario (2071-2100) were obtained, a 2-dimensional hydrodynamic model was used to obtain flood inundation and velocity distribution on the floodplain. Distribution of velocity and inundation depth was spatially analyzed to obtain flood hazard zones in the projected climate change scenario. Results show that spatial variation in flood hazard zones will be significantly altered in the projected climate change scenario compared to land use/land cover changes.


Climate change is an inevitable phenomenon that has lead the earth to evolve from an ice age to present era. Due to rise in temperature, rate of Evapotranspiration is increasing that leads to higher rate of maximum event. This raises the need to analyse the watersheds which shows considerable vulnerability towards climate change. SWAT model is chosen to simulate the analysis which is a semi-distributed hydrological model. The model run has been carried out for 35 years where model outputs are compared with the observed values of Evapotranspiration. Model is successfully validated for five years giving NSE as 0.89. Calibrated & Validated model shows that average values of Evapotranspiration & Surface Runoff in mm against 882mm of rainfall are 303mm & 285mm respectively. A Hathmati watershed of western India is taken to demonstrate the work


2010 ◽  
Vol 7 (2) ◽  
pp. 1913-1944 ◽  
Author(s):  
D. G. Kingston ◽  
R. G. Taylor

Abstract. The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on water resources in a humid, tropical catchment (the River Mitano) in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as from parameter specification within hydrological models. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (developed using SWAT) of the catchment. Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on HadCM3 climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge). Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.


Sign in / Sign up

Export Citation Format

Share Document