Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport

Pramana ◽  
2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Muhammad Irfan ◽  
Kiran Rafiq ◽  
Muhammad Shoaib Anwar ◽  
Masood Khan ◽  
Waqar Azeem Khan ◽  
...  
Author(s):  
F. I. Molina-Herrera ◽  
C. O. Castillo-Araiza ◽  
H. Jiménez-Islas ◽  
F. López-Isunza

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.


2017 ◽  
Vol 74 (8) ◽  
pp. 2615-2632 ◽  
Author(s):  
Mirjana Sakradzija ◽  
Cathy Hohenegger

Abstract The distribution of cloud-base mass flux is studied using large-eddy simulations (LESs) of two reference cases: one representing conditions over the tropical ocean and another one representing midlatitude conditions over land. To examine what sets the difference between the two distributions, nine additional LES cases are set up as variations of the two reference cases. It is found that the total surface heat flux and its changes over the diurnal cycle do not influence the distribution shape. The latter is also not determined by the level of organization in the cloud field. It is instead determined by the ratio of the surface sensible heat flux to the latent heat flux, that is, the Bowen ratio B. This ratio sets the thermodynamic efficiency of the moist convective heat cycle, which determines the portion of the total surface heat flux that can be transformed into mechanical work of convection against mechanical dissipation. The thermodynamic moist heat cycle sets the average mass flux per cloud 〈m〉, and through 〈m〉 it also controls the shape of the distribution. An expression for 〈m〉 is derived based on the moist convective heat cycle and is evaluated against LES. This expression can be used in shallow cumulus parameterizations as a physical constraint on the mass flux distribution. The similarity between the mass flux and the cloud area distributions indicates that B also has a role in shaping the cloud area distribution, which could explain its different shapes and slopes observed in previous studies.


1993 ◽  
Author(s):  
M.W. Kissick ◽  
P.C. Efthimion ◽  
D.K. Mansfield ◽  
J.D. Callen ◽  
C.E. Bush ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 118-127
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agrawal

The present study explores the slip flow and heat transfer induced by a radially surface with MHD Carreau nanofluid. In addition, the effects of temperature jump, non-linear radiation and the dependent zero mass flux also taken into account. This study also considers the cross-diffusion effect on temperature and concentration governing profiles. Appropriate transformations are engaged in order to acquire nonlinear differential equations (ODEs) from the partial differential system, their solutions are obtained by Runge-Kutta 4th order with shooting scheme in MATLAB. The impact of pertinent flow parameters such as first and second order velocity slip parameter, temperature jump, magnetic parameter, heat source, radiation parameter, melting surface parameter, temperature ratio parameter on dimensionless velocity, temperature and concentration profiles achieved graphically as well as local skin friction, Nusselt number and Sherwood number are demonstrated in the form of Table. first order velocity slip parameter (slip1) on f′, Θ and Φ profile fields. With an increment in the velocity slip first order parameter (slip1) we have perceived a fall in the momentum boundary layer and concentration profiles and a growth in the fluid temperature field.


2003 ◽  
Vol 475 ◽  
pp. 21-40 ◽  
Author(s):  
ULRICH BURR ◽  
LEOPOLD BARLEON ◽  
PAUL JOCHMANN ◽  
ARKADY TSINOBER

This article presents an experimental study of magnetohydrodynamic convection in a tall vertical slot under the influence of a horizontal magnetic field. The test fluid is an eutectic sodium potassium Na22K78 alloy with a small Prandtl number of Pr ≈ 0:02. The experimental setup covers Rayleigh numbers in the range 103 [lsim ] Ra [lsim ] 8×104 and Hartmann numbers 0 < M < 1600. The effect of the magnetic field on the convective heat transport is determined not only by damping as expected from Joule dissipation but also, for magnetic fields not too strong, the convective heat transfer may be considerably enhanced compared to ordinary hydrodynamic (OHD) flow. Estimates of the isotropy properties of the flow by a four-element temperature probe demonstrate that the increase in convective heat transport accompanies the formation of strong local anisotropy of the turbulent eddies in the sense of an alignment of the main direction of vorticity with the magnetic field. The reduced three-dimensional nonlinearities in non-isotropic flow favour the formation of largescale vortex structures compared to OHD flow, which are more effective for convective heat transport. Along with the formation of quasi-two-dimensional vortex structures, temperature fluctuations may be considerably enhanced in a magnetic field that is not too strong. However, above Hartmann numbers M [gsim ] 400 the formerly strongly time-dependent flow suddenly becomes stationary with an extended region of high convective heat transport at stationary flow. Finally, for very high Hartmann numbers the convective motion is strongly suppressed and the heat transport is reduced to a state close to pure heat conduction.


Sign in / Sign up

Export Citation Format

Share Document