scholarly journals What Determines the Distribution of Shallow Convective Mass Flux through a Cloud Base?

2017 ◽  
Vol 74 (8) ◽  
pp. 2615-2632 ◽  
Author(s):  
Mirjana Sakradzija ◽  
Cathy Hohenegger

Abstract The distribution of cloud-base mass flux is studied using large-eddy simulations (LESs) of two reference cases: one representing conditions over the tropical ocean and another one representing midlatitude conditions over land. To examine what sets the difference between the two distributions, nine additional LES cases are set up as variations of the two reference cases. It is found that the total surface heat flux and its changes over the diurnal cycle do not influence the distribution shape. The latter is also not determined by the level of organization in the cloud field. It is instead determined by the ratio of the surface sensible heat flux to the latent heat flux, that is, the Bowen ratio B. This ratio sets the thermodynamic efficiency of the moist convective heat cycle, which determines the portion of the total surface heat flux that can be transformed into mechanical work of convection against mechanical dissipation. The thermodynamic moist heat cycle sets the average mass flux per cloud 〈m〉, and through 〈m〉 it also controls the shape of the distribution. An expression for 〈m〉 is derived based on the moist convective heat cycle and is evaluated against LES. This expression can be used in shallow cumulus parameterizations as a physical constraint on the mass flux distribution. The similarity between the mass flux and the cloud area distributions indicates that B also has a role in shaping the cloud area distribution, which could explain its different shapes and slopes observed in previous studies.

Author(s):  
Patrick H. Oosthuizen ◽  
Jane T. Paul

Two-dimensional natural convective heat transfer from vertical plates has been extensively studied. However, when the width of the plate is relatively small compared to its height, the heat transfer rate can be greater than that predicted by these two-dimensional flow results. Because situations that can be approximately modelled as narrow vertical plates occur in a number of practical situations, there exists a need to be able to predict heat transfer rates from such narrow plates. Attention has here been given to a plate with a uniform surface heat flux. The magnitude of the edge effects will, in general, depend on the boundary conditions existing near the edge of the plate. To examine this effect, two situations have been considered. In one, the heated plate is imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane while in the second there are plane adiabatic surfaces above and below the heated plate but the edge of the plate is directly exposed to the surrounding fluid. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical centre-plane of the plate. The solution has been obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in terms of dimensionless variables. Results have only been obtained for a Prandtl number of 0.7. A wide range of the other governing parameters have been considered for both edge situations and the conditions under which three dimensional flow effects can be neglected have been deduced.


2020 ◽  
Author(s):  
Jasper Denissen ◽  
Hendrik Wouters ◽  
René Orth ◽  
Diego Miralles ◽  
Ryan Teuling

<p>The land surface can influence near-surface weather. This happens, amongst others, through the impact of soil moisture availability on surface heat fluxes: when soil moisture is unavailable in soil moisture-limited conditions, most of the available energy will be used for heating the air above the land surface (sensible heat flux). But as soil moisture increases, evapotranspiration (latent heat flux) increases, affecting the surface heat flux partitioning. At the point that ample soil moisture is available in energy-limited conditions, the surface heat flux partitioning remains unaffected by soil moisture. The atmospheric boundary layer (ABL) responds to changes in surface heat flux partitioning in particular in terms of its temperature and humidity. Based on these mechanisms, observations of boundary layer dynamics should allow to infer the large-scale land surface state.</p><p>The goal of this study is to use atmospheric measurements of temperature and humidity to estimate the surface heat flux partitioning. This is achieved by constraining an ABL model (CLASS4GL) with the vertical temperature and humidity profiles as observed by thousands of soundings of hot air balloons across the globe. In CLASS4GL, the initial soil moisture is adjusted to yield matching modelled versus observed vertical temperature and humidity profiles. By doing so, the resulting surface fluxes are inferred exclusively from atmospheric measurements.</p><p>We find that ABL’s tend to higher, warmer and drier in water-limited conditions. This largely results from changes in soil moisture availability, which mainly affects the sensible heat flux and consequently, the surface heat flux partitioning. We determine the critical soil moisture, which distinguishes between soil moisture- and energy- limited conditions, using the ratio between the sensible- and latent heat flux and independent satellite surface soil moisture.</p><p>This is the first time that balloon soundings are used globally to assess the critical soil moisture. This research will help to further improve our understanding of land-atmosphere feedbacks and foster a correct representation of land surface characteristics in Land Models and subsequently, Climate Models.</p>


1992 ◽  
Vol 114 (1) ◽  
pp. 85-93 ◽  
Author(s):  
D. A. Zumbrunnen

Impinging flows are used in a variety of applications where effective and localized heat transfer is mandated by short residence times or by space constraints, as in cooling materials moving along a conveyor or removing heat dissipated within microelectronic circuitry. A wide selection of heat transfer correlations is available for steady-state conditions. However, instantaneous heat transfer coefficients can differ significantly from steady-state values when temporal variations occur in the surface heat flux or surface temperature. Under these conditions, the temperatures of fluid layers near the surface are affected preferentially due to their proximity to the temporal variation. A theoretical model is formulated to assess the importance of a time-varying surface heat flux or temperature on convective heat transfer in a steady, planar stagnation flow. A governing equation for the transient heat transfer response is formulated analytically from the boundary layer equations for momentum and energy conservation in the fluid. Numerical solutions to the governing equation are determined for ramp and sinusoidal changes in the surface heat flux or temperature. Results indicate that the time response is chiefly governed by the velocity gradient in the free stream and to a lesser extent by the Prandtl number. Departures from steady-state Nusselt numbers are larger for more rapid transients and smaller or comparable in size to the magnitude of the imposed variation at the surface.


Author(s):  
Hee Joon Lee ◽  
Shi-Chune Yao

During the operation of parallel evaporative micro-channels, system instability may occur in terms of cyclical fluctuations at a long period. This is due to the co-existence of the liquid phase flow at high mass flux and the two-phase flow at a lower mass flux among different parallel channels under the same total pressure drop. For a system at constant flow-rate pumping, with a pressure regulating tank, and a constant heating pre-heater, the system may experience severe alternations between these two states of boiling and non-boiling with a period of minutes. This cyclical system instability has been modeled. In the model, the existence of the liquid phase flow happens at conditions of inlet subcooling and low surface heat flux that the boiling inception is hard to occur. Accordingly, the system instability criteria are established in terms of a System binary states parameter S and a non-dimensional surface heat flux, which is normalized with the boiling incipient heat flux. This model has been validated experimentally.


2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


Sign in / Sign up

Export Citation Format

Share Document