scholarly journals Thermo-economic and environmental analysis of integrating renewable energy sources in a district heating and cooling network

2019 ◽  
Vol 13 (1) ◽  
pp. 79-100 ◽  
Author(s):  
Muhammad Asim ◽  
Saad Saleem ◽  
Muhammad Imran ◽  
Michael K. H. Leung ◽  
Syed Asad Hussain ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 5442
Author(s):  
Beatriz María Paredes-Sánchez ◽  
José Pablo Paredes ◽  
Natalia Caparrini ◽  
Elena Rivo-López

District heating and cooling (DHC) systems play an important role under the new European Union (EU) energy transition strategy. Thermal energy networks are helping to stimulate the development of alternative technologies based on a broad range of renewable energy sources. The present study analysed the current situation of DHC systems in Spain and provides an overview of the challenges and future opportunities that their use will entail. Its objective is to assess thermal energy conversion and management from a holistic perspective, including a study of existing energy infrastructures. The focus of this study lies on Spain given the country’s abundance of natural resources such as renewable energy sources including solar energy, biomass and geothermal energy, among others, as well as its strategic location on the map of the EU. Based on the analysis of the three factors for energy conversion in a district heating system, namely resources, technology, and management, the methodology provided an assessment of the different factors involved in running a DHC system. The results show an estimated total production for DHC networks of 1448 MWth, of which 72% is supplied purely by renewable energy sources.


2019 ◽  
Vol 9 (23) ◽  
pp. 5059 ◽  
Author(s):  
Marcus Brennenstuhl ◽  
Robin Zeh ◽  
Robert Otto ◽  
Ruben Pesch ◽  
Volker Stockinger ◽  
...  

District heating and cooling networks can pose the possibility of including a variety of renewable energy sources as well as waste heat into a district’s heat supply concept. Unfortunately, low demand densities as they increasingly occur through higher building energy standards and in rural areas render conventional heating and cooling networks inefficient. At the same time, power-to-heat is becoming more and more important to make use of a larger amount of renewable energy sources on the electrical side by providing more flexibility by means of demand response and demand-side management. Within this work, a rural Plus-Energy settlement is presented addressing those topics by a low-temperature district heating and cooling network connected to a novel agrothermal collector supplying 23 residential buildings with decentralized heat pumps and PV systems. The collector, the network, and six of the buildings are equipped with comprehensive monitoring equipment. Within those buildings, forecast and optimization algorithms are implemented to adapt their heat pump operation to enable an increase of self-consumption, to include flexible electricity tariffs, and also to participate in power markets. Thereby, for the low-temperature district heating and cooling network, it has been shown that the concept can operate in the future at competitive heat costs. On the building level, up to 50% of cost savings could be achieved under ideal conditions with the optimization of the self-consumption of PV electricity. However, to ensure optimal results, the individual system components have to be dimensioned for this task.


2017 ◽  
Vol 35 (7) ◽  
pp. 1218-1241 ◽  
Author(s):  
Frede Hvelplund ◽  
Søren Djørup

Transition from the stored energy of fossil fuel-based systems to fluctuating renewable energy sources requires a fundamental change in both the energy supply system and governance arrangements. According to analyses made using the Aalborg University Energy PLAN model, the infrastructure required to handle fluctuating energy – such as goals for further expanding the exploitation of wind power towards 50% of energy consumption – necessitates the integration of power, district heating, transportation and biomass production, which should be geographically distributed. To enhance our understanding of this paradigmatic technological change, this article presents both a general analysis of the regulatory consequences and a specific analysis of the immediate challenges involved in the transition process, framed within the Danish context. The general conclusion is that the required distributed, local and regional technological energy system needs a bottom up and interactive regulatory framework, where the central government should have a more reflexive and communicative role, providing services and national coordination for an energy system that contains a large share of fluctuating renewable energy sources. A specific conclusion is that the present Danish tariff principles and energy tax system should be fundamentally altered in order to better facilitate the coordination of the heat and electricity sectors, to incentivise the creation of the necessary integration infrastructure.


2019 ◽  
Vol 3 (2) ◽  

In the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasise has been put on utilisation of the ambient energy from ground source heat pump systems (GSHPs) and other renewable energy sources. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. The study was carried out at the Energy Research Institute (ERI), between September 2016 and November 2017. This paper highlights the potential energy saving that could be achieved through use of ground energy source. The main concept of this technology is that it uses the lower temperature of the ground (approximately <32°C), which remains relatively stable throughout the year, to provide space heating, cooling and domestic hot water inside the building area. The purpose of this study, however, is to examine the means of reducing of energy consumption in buildings, identifying GSHPs as an environmental friendly technology able to provide efficient utilisation of energy in the buildings sector, promoting the use of GSHPs applications as an optimum means of heating and cooling, and presenting typical applications and recent advances of the DX GSHPs. It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. This study highlights the energy problem and the possible saving that can be achieved through the use of the GSHP systems. This article discusses the principle of the ground source energy, varieties of GSHPs, and various developments.


2013 ◽  
pp. 261-278
Author(s):  
Abdeen Mustafa Omer

In the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasis has been put on utilisation of the ambient energy from ground source and other renewable energy sources. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. This paper highlights the potential energy saving that could be achieved through use of ground energy source. It also focuses on the optimisation and improvement of the operation conditions of the heat cycles and performances of the DX GSHP. It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. This article discusses the principle of the ground source energy, varieties of GSHPs, and various developments.


2006 ◽  
Vol 3 (6) ◽  
pp. 478-485 ◽  
Author(s):  
Volker Oschmann

AbstractThis article gives an overview of the European legal framework on renewable energy sources, that is those European legal provisions whose objective is to increase the exploitation of renewable energy sources in the production of electricity, heating and cooling, as well as fuel for transport. Although renewable energy sources are not an explicit matter for primary European law, it is clear, particularly given climate change and increasing dependency on energy imports, that they are gaining increasing importance in secondary European law and at Member State level.


2016 ◽  
Vol 28 (1-2) ◽  
pp. 70-87 ◽  
Author(s):  
András Mezősi ◽  
Enikő Kácsor ◽  
Ákos Beöthy ◽  
Ágnes Törőcsik ◽  
László Szabó

Sign in / Sign up

Export Citation Format

Share Document