scholarly journals Comparative Genomic Analysis of Two-Component Signal Transduction Systems in Probiotic Lactobacillus casei

2014 ◽  
Vol 54 (3) ◽  
pp. 293-301 ◽  
Author(s):  
Shuijing Yu ◽  
Yanping Peng ◽  
Wanyi Chen ◽  
Yangwu Deng ◽  
Yanhua Guo
2008 ◽  
Vol 21 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Wei Qian ◽  
Zhong-Ji Han ◽  
Chaozu He

The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Kira S. Makarova ◽  
Michael Y. Galperin ◽  
Eugene V. Koonin

ABSTRACT All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria . Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. IMPORTANCE Little is currently known about signal transduction pathways in Archaea . Recent studies indicate that KaiC-like ATPases, known as key components of the circadian clock apparatus in cyanobacteria, are involved in the regulation of archaellum assembly and, likely, type IV pili and the gas vesicle system in Archaea . We performed comprehensive comparative genomic analyses of the KaiC family. A vast protein interaction network was revealed, with KaiC family proteins as hubs for numerous input and output components, many of which are shared with two-component signal transduction systems. Putative KaiC-based signal transduction systems are predicted to regulate the activities of membrane-associated complexes and individual proteins, such as signal recognition particle and membrane transporters, and also could be important for oxidative stress response regulation. KaiC-centered signal transduction networks are predicted to play major roles in archaeal physiology, and this work is expected to stimulate their experimental characterization.


2010 ◽  
Vol 77 (4) ◽  
pp. 1516-1519 ◽  
Author(s):  
Cristina Alcántara ◽  
Ainhoa Revilla-Guarinos ◽  
Manuel Zúñiga

ABSTRACTLactobacillus caseiBL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed.


Sign in / Sign up

Export Citation Format

Share Document