scholarly journals Influence of Two-Component Signal Transduction Systems ofLactobacillus caseiBL23 on Tolerance to Stress Conditions

2010 ◽  
Vol 77 (4) ◽  
pp. 1516-1519 ◽  
Author(s):  
Cristina Alcántara ◽  
Ainhoa Revilla-Guarinos ◽  
Manuel Zúñiga

ABSTRACTLactobacillus caseiBL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed.

mBio ◽  
2021 ◽  
Author(s):  
Mingshan Li ◽  
Xianjin Xu ◽  
Xiaoqin Zou ◽  
Gerald L. Hazelbauer

Two-component signal transduction systems are a primary means by which bacteria sense and respond to their environment. Response regulators are key components of these systems.


1997 ◽  
Vol 110 (10) ◽  
pp. 1141-1145 ◽  
Author(s):  
W.F. Loomis ◽  
G. Shaulsky ◽  
N. Wang

Autophosphorylating histidine kinases are an ancient conserved family of enzymes that are found in eubacteria, archaebacteria and eukaryotes. They are activated by a wide range of extracellular signals and transfer phosphate moieties to aspartates found in response regulators. Recent studies have shown that such two-component signal transduction pathways mediate osmoregulation in Saccharomyces cerevisiae, Dictyostelium discoideum and Neurospora crassa. Moreover, they play pivotal roles in responses of Arabidopsis thaliana to ethylene and cytokinin. A transmembrane histidine kinase encoded by dhkA accumulates when Dictyostelium cells aggregate during development. Activation of DhkA results in the inhibition of its response regulator, RegA, which is a cAMP phosphodiesterase that regulates the cAMP dependent protein kinase PKA. When PKA is activated late in the differentiation of prespore cells, they encapsulate into spores. There is evidence that this two-component system participates in a feedback loop linked to PKA in prestalk cells such that the signal to initiate encapsulation is rapidly amplified. Such signal transduction pathways can be expected to be found in a variety of eukaryotic differentiations since they are rapidly reversible and can integrate disparate signals.


Sign in / Sign up

Export Citation Format

Share Document