scholarly journals Improving Saccharification Efficiency of Alfalfa Stems Through Modification of the Terminal Stages of Monolignol Biosynthesis

2008 ◽  
Vol 1 (3-4) ◽  
pp. 180-192 ◽  
Author(s):  
Lisa A. Jackson ◽  
Gail L. Shadle ◽  
Rui Zhou ◽  
Jin Nakashima ◽  
Fang Chen ◽  
...  
2020 ◽  
Vol 13 (1) ◽  
pp. 259
Author(s):  
Ioanna Ntaikou ◽  
Georgia Antonopoulou ◽  
Gerasimos Lyberatos

In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).


Author(s):  
Nan Chao ◽  
Wei-Qi Chen ◽  
Xu Cao ◽  
Xiang-Ning Jiang ◽  
Ying Gai ◽  
...  

2021 ◽  
Author(s):  
Barbara De Meester ◽  
Ruben Vanholme ◽  
Lisanne de Vries ◽  
Marlies Wouters ◽  
Jan Van Doorsselaere ◽  
...  

2019 ◽  
Vol 116 (28) ◽  
pp. 13816-13824 ◽  
Author(s):  
Kwang Ho Kim ◽  
Aymerick Eudes ◽  
Keunhong Jeong ◽  
Chang Geun Yoo ◽  
Chang Soo Kim ◽  
...  

Despite the enormous potential shown by recent biorefineries, the current bioeconomy still encounters multifaceted challenges. To develop a sustainable biorefinery in the future, multidisciplinary research will be essential to tackle technical difficulties. Herein, we leveraged a known plant genetic engineering approach that results in aldehyde-rich lignin via down-regulation of cinnamyl alcohol dehydrogenase (CAD) and disruption of monolignol biosynthesis. We also report on renewable deep eutectic solvents (DESs) synthesized from phenolic aldehydes that can be obtained fromCADmutant biomass. The transgenicArabidopsis thaliana CADmutant was pretreated with the DESs and showed a twofold increase in the yield of fermentable sugars compared with wild type (WT) upon enzymatic saccharification. Integrated use of low-recalcitrance engineered biomass, characterized by its aldehyde-type lignin subunits, in combination with a DES-based pretreatment, was found to be an effective approach for producing a high yield of sugars typically used for cellulosic biofuels and biobased chemicals. This study demonstrates that integration of renewable DES with plant genetic engineering is a promising strategy in developing a closed-loop process.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Hodgson-Kratky ◽  
G. Papa ◽  
A. Rodriguez ◽  
V. Stavila ◽  
B. Simmons ◽  
...  

Abstract Background Lignocellulosic biomass is recognized as a promising renewable feedstock for the production of biofuels. However, current methods for converting biomass into fermentable sugars are considered too expensive and inefficient due to the recalcitrance of the secondary cell wall. Biomass composition can be modified to create varieties that are efficiently broken down to release cell wall sugars. This study focused on identifying the key biomass components influencing plant cell wall recalcitrance that can be targeted for selection in sugarcane, an important and abundant source of biomass. Results Biomass composition and the amount of glucan converted into glucose after saccharification were measured in leaf and culm tissues from seven sugarcane genotypes varying in fiber composition after no pretreatment and dilute acid, hydrothermal and ionic liquid pretreatments. In extractives-free sugarcane leaf and culm tissue, glucan, xylan, acid-insoluble lignin (AIL) and acid-soluble lignin (ASL) ranged from 20 to 32%, 15% to 21%, 14% to 20% and 2% to 4%, respectively. The ratio of syringyl (S) to guaiacyl (G) content in the lignin ranged from 1.5 to 2.2 in the culm and from 0.65 to 1.1 in the leaf. Hydrothermal and dilute acid pretreatments predominantly reduced xylan content, while the ionic liquid (IL) pretreatment targeted AIL reduction. The amount of glucan converted into glucose after 26 h of pre-saccharification was highest after IL pretreatment (42% in culm and 63.5% in leaf) compared to the other pretreatments. Additionally, glucan conversion in leaf tissues was approximately 1.5-fold of that in culm tissues. Percent glucan conversion varied between genotypes but there was no genotype that was superior to all others across the pretreatment groups. Path analysis revealed that S/G ratio, AIL and xylan had the strongest negative associations with percent glucan conversion, while ASL and glucan content had strong positive influences. Conclusion To improve saccharification efficiency of lignocellulosic biomass, breeders should focus on reducing S/G ratio, xylan and AIL content and increasing ASL and glucan content. This will be key for the development of sugarcane varieties for bioenergy uses.


2010 ◽  
Vol 113-116 ◽  
pp. 2025-2029
Author(s):  
An Ying Jiao ◽  
Kun Liu ◽  
Wen Li ◽  
Bing Liu ◽  
Yong Feng Li

Straw has a complex structure composed mainly by cellulose, hemicellulose and lignin, resulting in the difficulty to use it as the substrate for hydrogen production directly. Hydrogen production from saccharification plant straw was performed in this study. The effect of experimental time and temperature on saccharification efficiency of the straw was investigated in this work. The results show that efficiency of saccharification by hydrochloric acid on plant straw is better than that by acetate due to the different extent of acid ionization. The maximum sugar content of 36.8 Brix and 35.4 Brix was acquired at the experimental time of 1h and temperature of 20°C with the corresponding hydrogen yield of 0.02mlH2/L saccharification liquid and 0.0182mlH2/L saccharification liquid by bacteria SUES-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document