Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency

2016 ◽  
Vol 46 (6) ◽  
pp. 575-585 ◽  
Author(s):  
Dan Zhang ◽  
Yanqing Luo ◽  
Shaohua Chu ◽  
Yuee Zhi ◽  
Bin Wang ◽  
...  
2021 ◽  
Vol 7 (10) ◽  
pp. 853
Author(s):  
Ariyah Terasawat ◽  
Sivawan Phoolphundh

The utilization of rice straw for biofuel production is limited by its composition. The pretreatment process is required to improve the enzymatic accessibility of polysaccharides in the biomass prior to enzymatic saccharification. In this study, simultaneous biological pretreatment and saccharification (SPS) of rice straw starting from laccase production by Panus neostrigosus I9 was operated in a 2-L fermenter. It was found that fungal physiology was strongly influenced by the agitation, and that the highest laccase production was obtained at an agitation speed of 750 rpm (209.96 ± 0.34 U/L). The dilution rate of 0.05 h−1 was set in continuous fermentation which resulted in laccase activity of 678.49 ± 20.39 U/L, approximately three times higher than that in batch culture. Response surface methodology (RSM) was applied to achieve the condition for maximum percentage of delignification. The maximum percentage of delignification of 45.55% was accomplished after pretreatment of rice straw with laccase enzyme 39.40 U/g rice straw at 43.70 °C for 11.19 h. Reducing sugar of 3.85 ± 0.15 g/L was obtained from the digested rice straw in a SPS reactor, while non-pretreated rice straw gave only 1.13 ± 0.10 g/L within 12 h of incubation. The results indicated that simultaneous biological pretreatment and saccharification (SPS) of rice straw by laccase helped to improve the accessibility of cellulose by cellulolytic enzymes.


2020 ◽  
Author(s):  
Yafeng Ye ◽  
Shuoxun Wang ◽  
Kun Wu ◽  
Yan Ren ◽  
Hongrui Jiang ◽  
...  

Abstract Background: Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another. Result: Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type (WT). Further experiments indicated that the OsCESA9D387N mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9D387N heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging. Conclusion: Hence, manipulation of OsCESA9D387N can provide the perspective of the rice straw for biofuels and bioproducts due to its improved enzymatic saccharification.


2009 ◽  
Vol 1219 ◽  
Author(s):  
Ken Tokuyasu

AbstractRice straw is among the most abundant herbaceous biomass, and regarded as the central feedstock for bioethanol production in Japan. We found that significant amounts of soft carbohydrates (SCs), defined as carbohydrates readily recoverable by mere extraction from the biomass or brief enzymatic saccharification, exist in rice straw in the form of free glucose, free fructose, sucrose, starch, and β-1,3-1,4-glucan. Based on the finding, we proposed a simple method for bioethanol production from rice straw samples with SCs, by a heat treatment for sterilization and starch gelatinization, followed by simultaneous saccharification/fermentation with Saccharomyces cerevisiae. This method would offer an efficient process for bioethanol production without the aid of harsh thermo/chemical pretreatment step.


2010 ◽  
Vol 43 (4) ◽  
pp. 401-405 ◽  
Author(s):  
Masayuki Taniguchi ◽  
Daisuke Takahashi ◽  
Daisuke Watanabe ◽  
Kenji Sakai ◽  
Kazuhiro Hoshino ◽  
...  

2013 ◽  
Vol 142 ◽  
pp. 218-224 ◽  
Author(s):  
Feng Gu ◽  
Wangxia Wang ◽  
Lei Jing ◽  
Yongcan Jin

2020 ◽  
Author(s):  
Yafeng Ye ◽  
Shuoxun Wang ◽  
Kun Wu ◽  
Yan Ren ◽  
Hongrui Jiang ◽  
...  

Abstract Background Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another.Result Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type. Further experiments indicated that the OsCESA9D387N mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9D387N heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging.Conclusion Hence, manipulation of OsCESA9D387N can enhance biomass saccharification and simultaneously facilitate the decay of rice straw in the soil, providing a new strategy for bioenergy crop breeding.


Sign in / Sign up

Export Citation Format

Share Document