Effect of Temperature Variation on Codigestion of Animal Waste and Agricultural Residue for Biogas Production

2019 ◽  
Vol 13 (2) ◽  
pp. 630-642 ◽  
Author(s):  
Rafaela Franqueto ◽  
Joel Dias da Silva ◽  
Michel Konig
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1586 ◽  
Author(s):  
Kiran R. Parmar ◽  
Andrew B. Ross

Hydrothermal carbonisation (HTC) has been identified as a potential route for digestate enhancement producing a solid hydrochar and a process water rich in organic carbon. This study compares the treatment of four dissimilar digestates from anaerobic digestion (AD) of agricultural residue (AGR); sewage sludge (SS); residual municipal solid waste (MSW), and vegetable, garden, and fruit waste (VGF). HTC experiments were performed at 150, 200 and 250 °C for 1 h using 10%, 20%, and 30% solid loadings of a fixed water mass. The effect of temperature and solid loading to the properties of biocoal and biochemical methane potential (BMP) of process waters are investigated. Results show that the behaviour of digestate during HTC is feedstock dependent and the hydrochar produced is a poor-quality solid fuel. The AGR digestate produced the greatest higher heating value (HHV) of 24 MJ/kg, however its biocoal properties are poor due to slagging and fouling propensities. The SS digestate process water produced the highest amount of biogas at 200 °C and 30% solid loading. This study concludes that solely treating digestate via HTC enhances biogas production and that hydrochar be investigated for its use as a soil amender.


Author(s):  
Juan Galvarino Cerda Balcazar ◽  
Cristiano Maidana ◽  
charles rech ◽  
Mariana Coronas ◽  
Maurício Zanon Antunes

2020 ◽  
Vol 4 (1) ◽  
pp. 27
Author(s):  
Ridwan Yusuf Lubis ◽  
Lailatul Husna Lubis ◽  
Miftahul Husnah

Soft Matter ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. 2942-2956
Author(s):  
Rishabh D. Guha ◽  
Ogheneovo Idolor ◽  
Katherine Berkowitz ◽  
Melissa Pasquinelli ◽  
Landon R. Grace

We investigated the effect of temperature variation on the secondary bonding interactions between absorbed moisture and epoxies with different morphologies using molecular dynamics simulations.


2021 ◽  
Author(s):  
Bernardo Bastien-Olvera ◽  
Frances Moore

Abstract It is well established that temperature variability affects a range of outcomes relevant to human welfare, including health (Gasparrini et al., 2017) emotion and mood (Baylis et al., 2018), and productivity across a number of economic sectors (Carleton & Hsiang, 2016; Dell et al., 2014). However, a critical and still unresolved empirical question is whether temperature variation has a long-lasting effect on economic productivity and, therefore, whether damages compound over time in response to long-lived changes in temperature expected with climate change. Several studies have identified a relationship between temperature and GDP (Burke et al., 2015; Dell et al., 2012; Kalkuhl & Wenz, 2020), but empirical evidence as to the persistence of these effects is still weak. This paper presents a novel approach to isolate the persistent component of temperature effects on output using lower frequency temperature variation. Using three different datasets we find that longer temperature anomalies affect GDP growth as much or more than short-lived anomalies, implying persistent and therefore cumulative effects of climate change on economic output. The population-weighted global effect of -0.8 pp per degree is sufficient to reduce per-capita income in 2100 by 44% under RCP6, approximately an order of magnitude larger than damages currently represented in cost-benefit integrated assessment models (Diaz & Moore, 2017).


Sign in / Sign up

Export Citation Format

Share Document