Exploring secondary interactions and the role of temperature in moisture-contaminated polymer networks through molecular simulations

Soft Matter ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. 2942-2956
Author(s):  
Rishabh D. Guha ◽  
Ogheneovo Idolor ◽  
Katherine Berkowitz ◽  
Melissa Pasquinelli ◽  
Landon R. Grace

We investigated the effect of temperature variation on the secondary bonding interactions between absorbed moisture and epoxies with different morphologies using molecular dynamics simulations.

2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


2021 ◽  
Vol 23 (10) ◽  
pp. 5984-5991
Author(s):  
Letizia Tavagnacco ◽  
Ester Chiessi ◽  
Emanuela Zaccarelli

By using extensive all-atom molecular dynamics simulations of an atactic linear polymer chain, we unveil the role of pressure in the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM).


Langmuir ◽  
2017 ◽  
Vol 33 (42) ◽  
pp. 11543-11553 ◽  
Author(s):  
Li Li ◽  
Deshuai Yang ◽  
Trevor R. Fisher ◽  
Qi Qiao ◽  
Zhen Yang ◽  
...  

2006 ◽  
Vol 110 (7) ◽  
pp. 3323-3329 ◽  
Author(s):  
Said Hamad ◽  
Changman Moon ◽  
C. Richard A. Catlow ◽  
Ashley T. Hulme ◽  
Sarah L. Price

2017 ◽  
Vol 19 (10) ◽  
pp. 6909-6920 ◽  
Author(s):  
Tatsuhiko Ohto ◽  
Johannes Hunger ◽  
Ellen H. G. Backus ◽  
Wataru Mizukami ◽  
Mischa Bonn ◽  
...  

Vibrational spectroscopy and molecular simulations revealed the hydrophilicity and hydrophobicity of TMAO in aqueous solution.


Langmuir ◽  
2017 ◽  
Vol 34 (3) ◽  
pp. 1199-1207 ◽  
Author(s):  
K. G. Sprenger ◽  
Arushi Prakash ◽  
Gary Drobny ◽  
Jim Pfaendtner

2021 ◽  
Author(s):  
Soumya Lipsa Rath ◽  
Madhusmita Tripathy ◽  
Nabanita Mandal

Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. The lipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unravelling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10 and 50 ˚C. While temperature induced fluctuations should be monotonic, we observe a steady rise in the protein dynamics up to 40 ˚C, beyond which it surprisingly reverts back to the low temperature behaviour. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~30 to 40 ˚C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.   


Sign in / Sign up

Export Citation Format

Share Document